On a Navier-Stokes type equation and inequality
Banach Center Publications, Tome 27 (1992) no. 2, pp. 367-371.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A Navier-Stokes type equation corresponding to a non-linear relationship between the stress tensor and the velocity deformation tensor is studied and existence and uniqueness theorems for the solution, in the 3-dimensional case, of the Cauchy-Dirichlet problem, for a bounded solution and for an almost periodic solution are given. An inequality which in some sense is the limit of the equation is also considered and existence theorems for the solution of the Cauchy-Dirichlet problems and for a periodic solution are stated.
DOI : 10.4064/-27-2-367-371

Giovanni Prouse 1

1
@article{10_4064__27_2_367_371,
     author = {Giovanni Prouse},
     title = {On a {Navier-Stokes} type equation and inequality},
     journal = {Banach Center Publications},
     pages = {367--371},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1992},
     doi = {10.4064/-27-2-367-371},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/-27-2-367-371/}
}
TY  - JOUR
AU  - Giovanni Prouse
TI  - On a Navier-Stokes type equation and inequality
JO  - Banach Center Publications
PY  - 1992
SP  - 367
EP  - 371
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/-27-2-367-371/
DO  - 10.4064/-27-2-367-371
LA  - en
ID  - 10_4064__27_2_367_371
ER  - 
%0 Journal Article
%A Giovanni Prouse
%T On a Navier-Stokes type equation and inequality
%J Banach Center Publications
%D 1992
%P 367-371
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/-27-2-367-371/
%R 10.4064/-27-2-367-371
%G en
%F 10_4064__27_2_367_371
Giovanni Prouse. On a Navier-Stokes type equation and inequality. Banach Center Publications, Tome 27 (1992) no. 2, pp. 367-371. doi : 10.4064/-27-2-367-371. http://geodesic.mathdoc.fr/articles/10.4064/-27-2-367-371/

Cité par Sources :