Estimates of solutions to linear elliptic systems and equations
Banach Center Publications, Tome 27 (1992) no. 1, pp. 45-63.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Whenever nonlinear problems have to be solved through approximation methods by solving related linear problems a priori estimates are very useful. In the following this kind of estimates are presented for a variety of equations related to generalized first order Beltrami systems in the plane and for second order elliptic equations in $ℝ^m$. Different types of boundary value problems are considered. For Beltrami systems these are the Riemann-Hilbert, the Riemann and the Poincaré problem, while for elliptic equations the Dirichlet problem as well as entire solutions are involved.
DOI : 10.4064/-27-1-45-63

Heinrich Begehr 1

1
@article{10_4064__27_1_45_63,
     author = {Heinrich Begehr},
     title = {Estimates of solutions to linear elliptic systems and equations},
     journal = {Banach Center Publications},
     pages = {45--63},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1992},
     doi = {10.4064/-27-1-45-63},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/-27-1-45-63/}
}
TY  - JOUR
AU  - Heinrich Begehr
TI  - Estimates of solutions to linear elliptic systems and equations
JO  - Banach Center Publications
PY  - 1992
SP  - 45
EP  - 63
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/-27-1-45-63/
DO  - 10.4064/-27-1-45-63
LA  - en
ID  - 10_4064__27_1_45_63
ER  - 
%0 Journal Article
%A Heinrich Begehr
%T Estimates of solutions to linear elliptic systems and equations
%J Banach Center Publications
%D 1992
%P 45-63
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/-27-1-45-63/
%R 10.4064/-27-1-45-63
%G en
%F 10_4064__27_1_45_63
Heinrich Begehr. Estimates of solutions to linear elliptic systems and equations. Banach Center Publications, Tome 27 (1992) no. 1, pp. 45-63. doi : 10.4064/-27-1-45-63. http://geodesic.mathdoc.fr/articles/10.4064/-27-1-45-63/

Cité par Sources :