Existence of global solution of a nonlinear wave equation with short-range potential
Banach Center Publications, Tome 27 (1992) no. 1, pp. 163-167.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/-27-1-163-167

V. Georgiev 1 ; K. Ianakiev 1

1
@article{10_4064__27_1_163_167,
     author = {V. Georgiev and K. Ianakiev},
     title = {Existence of global solution of a nonlinear wave equation with short-range potential},
     journal = {Banach Center Publications},
     pages = {163--167},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1992},
     doi = {10.4064/-27-1-163-167},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/-27-1-163-167/}
}
TY  - JOUR
AU  - V. Georgiev
AU  - K. Ianakiev
TI  - Existence of global solution of a nonlinear wave equation with short-range potential
JO  - Banach Center Publications
PY  - 1992
SP  - 163
EP  - 167
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/-27-1-163-167/
DO  - 10.4064/-27-1-163-167
LA  - en
ID  - 10_4064__27_1_163_167
ER  - 
%0 Journal Article
%A V. Georgiev
%A K. Ianakiev
%T Existence of global solution of a nonlinear wave equation with short-range potential
%J Banach Center Publications
%D 1992
%P 163-167
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/-27-1-163-167/
%R 10.4064/-27-1-163-167
%G en
%F 10_4064__27_1_163_167
V. Georgiev; K. Ianakiev. Existence of global solution of a nonlinear wave equation with short-range potential. Banach Center Publications, Tome 27 (1992) no. 1, pp. 163-167. doi : 10.4064/-27-1-163-167. http://geodesic.mathdoc.fr/articles/10.4064/-27-1-163-167/

Cité par Sources :