Existence of global solution of a nonlinear wave equation with short-range potential
Banach Center Publications, Tome 27 (1992) no. 1, pp. 163-167
@article{10_4064__27_1_163_167,
author = {V. Georgiev and K. Ianakiev},
title = {Existence of global solution of a nonlinear wave equation with short-range potential},
journal = {Banach Center Publications},
pages = {163--167},
year = {1992},
volume = {27},
number = {1},
doi = {10.4064/-27-1-163-167},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/-27-1-163-167/}
}
TY - JOUR AU - V. Georgiev AU - K. Ianakiev TI - Existence of global solution of a nonlinear wave equation with short-range potential JO - Banach Center Publications PY - 1992 SP - 163 EP - 167 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/-27-1-163-167/ DO - 10.4064/-27-1-163-167 LA - en ID - 10_4064__27_1_163_167 ER -
%0 Journal Article %A V. Georgiev %A K. Ianakiev %T Existence of global solution of a nonlinear wave equation with short-range potential %J Banach Center Publications %D 1992 %P 163-167 %V 27 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/-27-1-163-167/ %R 10.4064/-27-1-163-167 %G en %F 10_4064__27_1_163_167
V. Georgiev; K. Ianakiev. Existence of global solution of a nonlinear wave equation with short-range potential. Banach Center Publications, Tome 27 (1992) no. 1, pp. 163-167. doi: 10.4064/-27-1-163-167
Cité par Sources :