Differential operators of the first order with degenerate principal symbols
Banach Center Publications, Tome 27 (1992) no. 1, pp. 147-161
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let there be given a differential operator on $ℝ^n$ of the form $D = ∑^{n}_{i,j=1} a_{ij}·x_j ∂/∂x_i + μ$, where $A = (a_{ij})$ is a real matrix and μ is a complex number. We study the following question: To what extent the mapping $D :S'(ℝ^n) → S'(ℝ^n)$ is surjective? We shall give some conditions on A and μ which assure the surjectivity of D.
@article{10_4064__27_1_147_161,
author = {Rainer Felix},
title = {Differential operators of the first order with degenerate principal symbols},
journal = {Banach Center Publications},
pages = {147--161},
year = {1992},
volume = {27},
number = {1},
doi = {10.4064/-27-1-147-161},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/-27-1-147-161/}
}
TY - JOUR AU - Rainer Felix TI - Differential operators of the first order with degenerate principal symbols JO - Banach Center Publications PY - 1992 SP - 147 EP - 161 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/-27-1-147-161/ DO - 10.4064/-27-1-147-161 LA - en ID - 10_4064__27_1_147_161 ER -
Rainer Felix. Differential operators of the first order with degenerate principal symbols. Banach Center Publications, Tome 27 (1992) no. 1, pp. 147-161. doi: 10.4064/-27-1-147-161
Cité par Sources :