Differential operators of the first order with degenerate principal symbols
Banach Center Publications, Tome 27 (1992) no. 1, pp. 147-161.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let there be given a differential operator on $ℝ^n$ of the form $D = ∑^{n}_{i,j=1} a_{ij}·x_j ∂/∂x_i + μ$, where $A = (a_{ij})$ is a real matrix and μ is a complex number. We study the following question: To what extent the mapping $D :S'(ℝ^n) → S'(ℝ^n)$ is surjective? We shall give some conditions on A and μ which assure the surjectivity of D.
DOI : 10.4064/-27-1-147-161

Rainer Felix 1

1
@article{10_4064__27_1_147_161,
     author = {Rainer Felix},
     title = {Differential operators of the first order with degenerate principal symbols},
     journal = {Banach Center Publications},
     pages = {147--161},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {1992},
     doi = {10.4064/-27-1-147-161},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/-27-1-147-161/}
}
TY  - JOUR
AU  - Rainer Felix
TI  - Differential operators of the first order with degenerate principal symbols
JO  - Banach Center Publications
PY  - 1992
SP  - 147
EP  - 161
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/-27-1-147-161/
DO  - 10.4064/-27-1-147-161
LA  - en
ID  - 10_4064__27_1_147_161
ER  - 
%0 Journal Article
%A Rainer Felix
%T Differential operators of the first order with degenerate principal symbols
%J Banach Center Publications
%D 1992
%P 147-161
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/-27-1-147-161/
%R 10.4064/-27-1-147-161
%G en
%F 10_4064__27_1_147_161
Rainer Felix. Differential operators of the first order with degenerate principal symbols. Banach Center Publications, Tome 27 (1992) no. 1, pp. 147-161. doi : 10.4064/-27-1-147-161. http://geodesic.mathdoc.fr/articles/10.4064/-27-1-147-161/

Cité par Sources :