Anabelian geometry with étale homotopy types
Annals of mathematics, Tome 184 (2016) no. 3, pp. 817-868 Cet article a éte moissonné depuis la source Annals of Mathematics website

Voir la notice de l'article

Anabelian geometry with étale homotopy types generalizes in a natural way classical anabelian geometry with étale fundamental groups. We show that, both in the classical and the generalized sense, any point of a smooth variety over a field $k$ that is finitely generated over $\mathbb{Q}$ has a fundamental system of (affine) anabelian Zariski-neighborhoods. This was predicted by Grothendieck in his letter to Faltings.

DOI : 10.4007/annals.2016.184.3.5

Alexander Schmidt  1   ; Jakob Stix  2

1 Mathematisches Institut, Universität Heidelberg, Heidelberg, Germany
2 Institut für Mathematik, Goethe--Universität Frankfurt, Frankfurt am Main, Germany
@article{10_4007_annals_2016_184_3_5,
     author = {Alexander Schmidt and Jakob Stix},
     title = {Anabelian geometry with  \'etale homotopy types},
     journal = {Annals of mathematics},
     pages = {817--868},
     year = {2016},
     volume = {184},
     number = {3},
     doi = {10.4007/annals.2016.184.3.5},
     mrnumber = {3549624},
     zbl = {06647933},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.5/}
}
TY  - JOUR
AU  - Alexander Schmidt
AU  - Jakob Stix
TI  - Anabelian geometry with  étale homotopy types
JO  - Annals of mathematics
PY  - 2016
SP  - 817
EP  - 868
VL  - 184
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.5/
DO  - 10.4007/annals.2016.184.3.5
LA  - en
ID  - 10_4007_annals_2016_184_3_5
ER  - 
%0 Journal Article
%A Alexander Schmidt
%A Jakob Stix
%T Anabelian geometry with  étale homotopy types
%J Annals of mathematics
%D 2016
%P 817-868
%V 184
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.3.5/
%R 10.4007/annals.2016.184.3.5
%G en
%F 10_4007_annals_2016_184_3_5
Alexander Schmidt; Jakob Stix. Anabelian geometry with  étale homotopy types. Annals of mathematics, Tome 184 (2016) no. 3, pp. 817-868. doi: 10.4007/annals.2016.184.3.5

Cité par Sources :