Birational boundedness for holomorphic symplectic varieties, Zarhin’s trick for $K3$ surfaces, and the Tate conjecture
Annals of mathematics, Tome 184 (2016) no. 2, pp. 487-526 Cet article a éte moissonné depuis la source Annals of Mathematics website

Voir la notice de l'article

We investigate boundedness results for families of holomorphic symplectic varieties up to birational equivalence. We prove the analogue of Zarhin’s trick for $K3$ surfaces by constructing big line bundles of low degree on certain moduli spaces of stable sheaves, and proving birational versions of Matsusaka’s big theorem for holomorphic symplectic varieties.
As a consequence of these results, we give a new geometric proof of the Tate conjecture for $K3$ surfaces over finite fields of characteristic at least $5$, and a simple proof of the Tate conjecture for $K3$ surfaces with Picard number at least $2$ over arbitrary finite fields — including fields of characteristic $2$.

DOI : 10.4007/annals.2016.184.2.4

François Charles  1

1 Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, Orsay, France
@article{10_4007_annals_2016_184_2_4,
     author = {Fran\c{c}ois Charles},
     title = {Birational boundedness for holomorphic symplectic varieties, {Zarhin{\textquoteright}s} trick for $K3$ surfaces, and the {Tate} conjecture},
     journal = {Annals of mathematics},
     pages = {487--526},
     year = {2016},
     volume = {184},
     number = {2},
     doi = {10.4007/annals.2016.184.2.4},
     mrnumber = {3548531},
     zbl = {06662218},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.4/}
}
TY  - JOUR
AU  - François Charles
TI  - Birational boundedness for holomorphic symplectic varieties, Zarhin’s trick for $K3$ surfaces, and the Tate conjecture
JO  - Annals of mathematics
PY  - 2016
SP  - 487
EP  - 526
VL  - 184
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.4/
DO  - 10.4007/annals.2016.184.2.4
LA  - en
ID  - 10_4007_annals_2016_184_2_4
ER  - 
%0 Journal Article
%A François Charles
%T Birational boundedness for holomorphic symplectic varieties, Zarhin’s trick for $K3$ surfaces, and the Tate conjecture
%J Annals of mathematics
%D 2016
%P 487-526
%V 184
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2016.184.2.4/
%R 10.4007/annals.2016.184.2.4
%G en
%F 10_4007_annals_2016_184_2_4
François Charles. Birational boundedness for holomorphic symplectic varieties, Zarhin’s trick for $K3$ surfaces, and the Tate conjecture. Annals of mathematics, Tome 184 (2016) no. 2, pp. 487-526. doi: 10.4007/annals.2016.184.2.4

Cité par Sources :