We derive sharp Moser-Trudinger inequalities on the CR sphere. The first type is in the Adams form, for powers of the sublaplacian and for general spectrally defined operators on the space of CR-pluriharmonic functions. We will then obtain the sharp Beckner-Onofri inequality for CR-pluriharmonic functions on the sphere and, as a consequence, a sharp logarithmic Hardy-Littlewood-Sobolev inequality in the form given by Carlen and Loss.
Thomas P. Branson  ; Luigi Fontana  1 ; Carlo Morpurgo  2
@article{10_4007_annals_2013_177_1_1,
author = {Thomas P. Branson and Luigi Fontana and Carlo Morpurgo},
title = {Moser-Trudinger and {Beckner-Onofri{\textquoteright}s} inequalities on the {CR} sphere},
journal = {Annals of mathematics},
pages = {1--52},
year = {2013},
volume = {177},
number = {1},
doi = {10.4007/annals.2013.177.1.1},
mrnumber = {2999037},
zbl = {06146416},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.1/}
}
TY - JOUR AU - Thomas P. Branson AU - Luigi Fontana AU - Carlo Morpurgo TI - Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere JO - Annals of mathematics PY - 2013 SP - 1 EP - 52 VL - 177 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.1/ DO - 10.4007/annals.2013.177.1.1 LA - en ID - 10_4007_annals_2013_177_1_1 ER -
%0 Journal Article %A Thomas P. Branson %A Luigi Fontana %A Carlo Morpurgo %T Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere %J Annals of mathematics %D 2013 %P 1-52 %V 177 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2013.177.1.1/ %R 10.4007/annals.2013.177.1.1 %G en %F 10_4007_annals_2013_177_1_1
Thomas P. Branson; Luigi Fontana; Carlo Morpurgo. Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere. Annals of mathematics, Tome 177 (2013) no. 1, pp. 1-52. doi: 10.4007/annals.2013.177.1.1
Cité par Sources :