Primes in tuples I
Annals of mathematics, Tome 170 (2009) no. 2, pp. 819-862 Cet article a éte moissonné depuis la source Annals of Mathematics website

Voir la notice de l'article

We introduce a method for showing that there exist prime numbers which are very close together. The method depends on the level of distribution of primes in arithmetic progressions. Assuming the Elliott-Halberstam conjecture, we prove that there are infinitely often primes differing by 16 or less. Even a much weaker conjecture implies that there are infinitely often primes a bounded distance apart. Unconditionally, we prove that there exist consecutive primes which are closer than any arbitrarily small multiple of the average spacing, that is, \[ \liminf_{n\to \infty} \frac{p_{n+1}-p_n}{\log p_n} =0 .\] We will quantify this result further in a later paper.

DOI : 10.4007/annals.2009.170.819

Daniel A. Goldston  1   ; János Pintz  2   ; Cem Y. Yíldírím  3

1 Department of Mathematics<br/>San Jose State University<br/>One Washington Square<br/>San Jose, CA 95192-0130<br/>United States
2 Alfred Rényi Institute of Mathematics<br/>Hungarian Academy of Sciences<br/> P.O. Box 127<br/>1364 Budapest<br/>Hungary
3 Feza Gürsey Enstitüsü<br/>Kuleli Mahallesi, Şekip Ayhan Özışık Caddesi 44<br/>34684 Çengelköy, İstanbul<br/>Turkey
@article{10_4007_annals_2009_170_819,
     author = {Daniel A. Goldston and J\'anos Pintz and Cem Y. Y{\'\i}ld{\'\i}r{\'\i}m},
     title = {Primes in tuples {I}},
     journal = {Annals of mathematics},
     pages = {819--862},
     year = {2009},
     volume = {170},
     number = {2},
     doi = {10.4007/annals.2009.170.819},
     mrnumber = {2552109},
     zbl = {1207.11096},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.819/}
}
TY  - JOUR
AU  - Daniel A. Goldston
AU  - János Pintz
AU  - Cem Y. Yíldírím
TI  - Primes in tuples I
JO  - Annals of mathematics
PY  - 2009
SP  - 819
EP  - 862
VL  - 170
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.819/
DO  - 10.4007/annals.2009.170.819
LA  - en
ID  - 10_4007_annals_2009_170_819
ER  - 
%0 Journal Article
%A Daniel A. Goldston
%A János Pintz
%A Cem Y. Yíldírím
%T Primes in tuples I
%J Annals of mathematics
%D 2009
%P 819-862
%V 170
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.819/
%R 10.4007/annals.2009.170.819
%G en
%F 10_4007_annals_2009_170_819
Daniel A. Goldston; János Pintz; Cem Y. Yíldírím. Primes in tuples I. Annals of mathematics, Tome 170 (2009) no. 2, pp. 819-862. doi: 10.4007/annals.2009.170.819

Cité par Sources :