Let $G_\infty$ be a semisimple real Lie group with unitary dual $\widehat{G}_{\infty}$. We produce new upper bounds for the multiplicities with which representations $\pi \in \widehat{G}_{\infty}$ of cohomological type appear in certain spaces of cusp forms on $G_\infty$. The main new idea is to apply noncommutative Iwasawa theory to certain $p$-adic completions of the cohomology of locally symmetric spaces.
Frank Calegari  1 ; Matthew Emerton  1
@article{10_4007_annals_2009_170_1437,
author = {Frank Calegari and Matthew Emerton},
title = {Bounds for multiplicities of unitary representations of cohomological type in spaces of cusp forms},
journal = {Annals of mathematics},
pages = {1437--1446},
year = {2009},
volume = {170},
number = {3},
doi = {10.4007/annals.2009.170.1437},
mrnumber = {2600878},
zbl = {1195.22015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1437/}
}
TY - JOUR AU - Frank Calegari AU - Matthew Emerton TI - Bounds for multiplicities of unitary representations of cohomological type in spaces of cusp forms JO - Annals of mathematics PY - 2009 SP - 1437 EP - 1446 VL - 170 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1437/ DO - 10.4007/annals.2009.170.1437 LA - en ID - 10_4007_annals_2009_170_1437 ER -
%0 Journal Article %A Frank Calegari %A Matthew Emerton %T Bounds for multiplicities of unitary representations of cohomological type in spaces of cusp forms %J Annals of mathematics %D 2009 %P 1437-1446 %V 170 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2009.170.1437/ %R 10.4007/annals.2009.170.1437 %G en %F 10_4007_annals_2009_170_1437
Frank Calegari; Matthew Emerton. Bounds for multiplicities of unitary representations of cohomological type in spaces of cusp forms. Annals of mathematics, Tome 170 (2009) no. 3, pp. 1437-1446. doi: 10.4007/annals.2009.170.1437
Cité par Sources :