In the process of developing the theory of free probability and free entropy, Voiculescu introduced in 1991 a random matrix model for a free semicircular system. Since then, random matrices have played a key role in von Neumann algebra theory (cf. [V8], [V9]). The main result of this paper is the following extension of Voiculescu’s random matrix result: Let $(X_1^{(n)},\dots,X_r^{(n)})$ be a system of $r$ stochastically independent $n\times n$ Gaussian self-adjoint random matrices as in Voiculescu’s random matrix paper [V4], and let $(x_1,\dots,x_r)$ be a semi-circular system in a $C^*$-probability space. Then for every polynomial $p$ in $r$ noncommuting variables \[ \lim_{n\to\infty} \big\|p\big(X_1^{(n)}(\omega),\dots,X_r^{(n)}(\omega)\big)\big\| =\|p(x_1,\dots,x_r)\|, \] for almost all $\omega$ in the underlying probability space. We use the result to show that the $\mathrm{Ext}$-invariant for the reduced $C^*$-algebra of the free group on 2 generators is not a group but only a semi-group. This problem has been open since Anderson in 1978 found the first example of a $C^*$-algebra $\mathcal{A}$ for which $\mathrm{Ext}(\mathcal{A})$ is not a group.
Uffe Haagerup  1 ; Steen Thorbjørnsen  1
@article{10_4007_annals_2005_162_711,
author = {Uffe Haagerup and Steen Thorbj{\o}rnsen},
title = {A new application of random matrices: {Ext}$(C^*_{\mathrm{red}}(F_2))$ is not a group},
journal = {Annals of mathematics},
pages = {711--775},
year = {2005},
volume = {162},
number = {2},
doi = {10.4007/annals.2005.162.711},
mrnumber = {2183281},
zbl = {1103.46032},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.711/}
}
TY - JOUR
AU - Uffe Haagerup
AU - Steen Thorbjørnsen
TI - A new application of random matrices: Ext$(C^*_{\mathrm{red}}(F_2))$ is not a group
JO - Annals of mathematics
PY - 2005
SP - 711
EP - 775
VL - 162
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.711/
DO - 10.4007/annals.2005.162.711
LA - en
ID - 10_4007_annals_2005_162_711
ER -
%0 Journal Article
%A Uffe Haagerup
%A Steen Thorbjørnsen
%T A new application of random matrices: Ext$(C^*_{\mathrm{red}}(F_2))$ is not a group
%J Annals of mathematics
%D 2005
%P 711-775
%V 162
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4007/annals.2005.162.711/
%R 10.4007/annals.2005.162.711
%G en
%F 10_4007_annals_2005_162_711
Uffe Haagerup; Steen Thorbjørnsen. A new application of random matrices: Ext$(C^*_{\mathrm{red}}(F_2))$ is not a group. Annals of mathematics, Tome 162 (2005) no. 2, pp. 711-775. doi: 10.4007/annals.2005.162.711
Cité par Sources :