On a class of Humbert-Hermite polynomials
Novi Sad Journal of Mathematics, Tome 51 (2021) no. 1
Cet article a éte moissonné depuis la source Novi sad journal of mathematics website
A unified presentation of a class of Humbert's polynomials in two variables which generalizes
the well known class of Gegenbauer, Humbert, Legendre, Chebycheff, Pincherle, Horadam, Kinnsy, Horadam-Pethe, Djordjević,
Gould, Milovanović and Djordjević, Pathan and Khan polynomials and many not so called 'named'
polynomials has inspired the present paper and the authors define here generalized Humbert-Hermite
polynomials of two variables. Several expansions of Humbert-Hermite polynomials,
Hermite-Gegenbaurer (or ultraspherical) polynomials and Hermite-Chebyshev polynomials are proved.
Publié le :
DOI :
10.30755/NSJOM.05832
Classification :
33C45, 33C55, 33C99
Keywords: Hermite polynomials, Humbert polynomials, Gegenbauer polynomials, Chebyshev polynomials, Pathan-Khan polynomials, hypergeometric function
Keywords: Hermite polynomials, Humbert polynomials, Gegenbauer polynomials, Chebyshev polynomials, Pathan-Khan polynomials, hypergeometric function
@article{10.30755/NSJOM.05832,
author = {Waseem A. Khan and M. A. Pathan},
title = {On a class of {Humbert-Hermite} polynomials},
journal = {Novi Sad Journal of Mathematics},
pages = {1 - 11},
year = {2021},
volume = {51},
number = {1},
doi = {10.30755/NSJOM.05832},
url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.05832/}
}
Waseem A. Khan; M. A. Pathan. On a class of Humbert-Hermite polynomials. Novi Sad Journal of Mathematics, Tome 51 (2021) no. 1. doi: 10.30755/NSJOM.05832
Cité par Sources :