On a class of Humbert-Hermite polynomials
Novi Sad Journal of Mathematics, Tome 51 (2021) no. 1 Cet article a éte moissonné depuis la source Novi sad journal of mathematics website

Voir la notice de l'article

A unified presentation of a class of Humbert's polynomials in two variables which generalizes the well known class of Gegenbauer, Humbert, Legendre, Chebycheff, Pincherle, Horadam, Kinnsy, Horadam-Pethe, Djordjević, Gould, Milovanović and Djordjević, Pathan and Khan polynomials and many not so called 'named' polynomials has inspired the present paper and the authors define here generalized Humbert-Hermite polynomials of two variables. Several expansions of Humbert-Hermite polynomials, Hermite-Gegenbaurer (or ultraspherical) polynomials and Hermite-Chebyshev polynomials are proved.
Publié le :
DOI : 10.30755/NSJOM.05832
Classification : 33C45, 33C55, 33C99
Keywords: Hermite polynomials, Humbert polynomials, Gegenbauer polynomials, Chebyshev polynomials, Pathan-Khan polynomials, hypergeometric function
@article{10.30755/NSJOM.05832,
     author = {Waseem A. Khan and M. A. Pathan},
     title = {On a class of {Humbert-Hermite} polynomials},
     journal = {Novi Sad Journal of Mathematics},
     pages = {1 - 11},
     year = {2021},
     volume = {51},
     number = {1},
     doi = {10.30755/NSJOM.05832},
     url = {http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.05832/}
}
TY  - JOUR
AU  - Waseem A. Khan
AU  - M. A. Pathan
TI  - On a class of Humbert-Hermite polynomials
JO  - Novi Sad Journal of Mathematics
PY  - 2021
SP  - 1 
EP  -  11
VL  - 51
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.05832/
DO  - 10.30755/NSJOM.05832
ID  - 10.30755/NSJOM.05832
ER  - 
%0 Journal Article
%A Waseem A. Khan
%A M. A. Pathan
%T On a class of Humbert-Hermite polynomials
%J Novi Sad Journal of Mathematics
%D 2021
%P 1 - 11
%V 51
%N 1
%U http://geodesic.mathdoc.fr/articles/10.30755/NSJOM.05832/
%R 10.30755/NSJOM.05832
%F 10.30755/NSJOM.05832
Waseem A. Khan; M. A. Pathan. On a class of Humbert-Hermite polynomials. Novi Sad Journal of Mathematics, Tome 51 (2021) no. 1. doi: 10.30755/NSJOM.05832

Cité par Sources :