Uniquely colorable Cayley graphs
Ars mathematica contemporanea, Tome 12 (2017) no. 1, pp. 155-165 Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website

Voir la notice de l'article

It is shown that the chromatic number χ(G) = k of a uniquely colorable Cayley graph G over a group Γ  is a divisor of ∣Γ ∣ = n. Each color class in a k-coloring of G is a coset of a subgroup of order n / k of Γ . Moreover, it is proved that (k − 1)n is a sharp lower bound for the number of edges of a uniquely k-colorable, noncomplete Cayley graph over an abelian group of order n. Finally, we present constructions of uniquely colorable Cayley graphs by graph products.
DOI : 10.26493/1855-3974.879.d47
Keywords: Vertex coloring, color classes, Cayley graph
@article{10_26493_1855_3974_879_d47,
     author = {Walter Klotz and Torsten Sander},
     title = {
		{Uniquely} colorable {Cayley} graphs
	},
     journal = {Ars mathematica contemporanea},
     pages = {155--165},
     year = {2017},
     volume = {12},
     number = {1},
     doi = {10.26493/1855-3974.879.d47},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.879.d47/}
}
TY  - JOUR
AU  - Walter Klotz
AU  - Torsten Sander
TI  - Uniquely colorable Cayley graphs
	
JO  - Ars mathematica contemporanea
PY  - 2017
SP  - 155
EP  - 165
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.879.d47/
DO  - 10.26493/1855-3974.879.d47
LA  - en
ID  - 10_26493_1855_3974_879_d47
ER  - 
%0 Journal Article
%A Walter Klotz
%A Torsten Sander
%T Uniquely colorable Cayley graphs
	
%J Ars mathematica contemporanea
%D 2017
%P 155-165
%V 12
%N 1
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.879.d47/
%R 10.26493/1855-3974.879.d47
%G en
%F 10_26493_1855_3974_879_d47
Walter Klotz; Torsten Sander. Uniquely colorable Cayley graphs. Ars mathematica contemporanea, Tome 12 (2017) no. 1, pp. 155-165. doi: 10.26493/1855-3974.879.d47

Cité par Sources :