Uniquely colorable Cayley graphs
Ars mathematica contemporanea, Tome 12 (2017) no. 1, pp. 155-165
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
It is shown that the chromatic number χ(G) = k of a uniquely colorable Cayley graph G over a group Γ is a divisor of ∣Γ ∣ = n. Each color class in a k-coloring of G is a coset of a subgroup of order n / k of Γ . Moreover, it is proved that (k − 1)n is a sharp lower bound for the number of edges of a uniquely k-colorable, noncomplete Cayley graph over an abelian group of order n. Finally, we present constructions of uniquely colorable Cayley graphs by graph products.
@article{10_26493_1855_3974_879_d47,
author = {Walter Klotz and Torsten Sander},
title = {
{Uniquely} colorable {Cayley} graphs
},
journal = {Ars mathematica contemporanea},
pages = {155--165},
year = {2017},
volume = {12},
number = {1},
doi = {10.26493/1855-3974.879.d47},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.879.d47/}
}
TY - JOUR AU - Walter Klotz AU - Torsten Sander TI - Uniquely colorable Cayley graphs JO - Ars mathematica contemporanea PY - 2017 SP - 155 EP - 165 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.879.d47/ DO - 10.26493/1855-3974.879.d47 LA - en ID - 10_26493_1855_3974_879_d47 ER -
Walter Klotz; Torsten Sander. Uniquely colorable Cayley graphs. Ars mathematica contemporanea, Tome 12 (2017) no. 1, pp. 155-165. doi: 10.26493/1855-3974.879.d47
Cité par Sources :