Embedded graphs whose links have the largest possible number of components
Ars mathematica contemporanea, Tome 8 (2015) no. 2, pp. 319-335 Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website

Voir la notice de l'article

We derive the basic properties of graphs embedded on surfaces of positive genus whose corresponding link diagrams have the largest possible number of components.
DOI : 10.26493/1855-3974.494.88e
Keywords: Embedded graphs, medial, components of links.
@article{10_26493_1855_3974_494_88e,
     author = {Stephen Huggett and Israa Tawfik},
     title = {
		{Embedded} graphs whose links have the largest possible number of components
	},
     journal = {Ars mathematica contemporanea},
     pages = {319--335},
     year = {2015},
     volume = {8},
     number = {2},
     doi = {10.26493/1855-3974.494.88e},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.494.88e/}
}
TY  - JOUR
AU  - Stephen Huggett
AU  - Israa Tawfik
TI  - Embedded graphs whose links have the largest possible number of components
	
JO  - Ars mathematica contemporanea
PY  - 2015
SP  - 319
EP  - 335
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.494.88e/
DO  - 10.26493/1855-3974.494.88e
LA  - en
ID  - 10_26493_1855_3974_494_88e
ER  - 
%0 Journal Article
%A Stephen Huggett
%A Israa Tawfik
%T Embedded graphs whose links have the largest possible number of components
	
%J Ars mathematica contemporanea
%D 2015
%P 319-335
%V 8
%N 2
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.494.88e/
%R 10.26493/1855-3974.494.88e
%G en
%F 10_26493_1855_3974_494_88e
Stephen Huggett; Israa Tawfik. Embedded graphs whose links have the largest possible number of components. Ars mathematica contemporanea, Tome 8 (2015) no. 2, pp. 319-335. doi: 10.26493/1855-3974.494.88e

Cité par Sources :