Embedded graphs whose links have the largest possible number of components
Ars mathematica contemporanea, Tome 8 (2015) no. 2, pp. 319-335
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
We derive the basic properties of graphs embedded on surfaces of positive genus whose corresponding link diagrams have the largest possible number of components.
@article{10_26493_1855_3974_494_88e,
author = {Stephen Huggett and Israa Tawfik},
title = {
{Embedded} graphs whose links have the largest possible number of components
},
journal = {Ars mathematica contemporanea},
pages = {319--335},
year = {2015},
volume = {8},
number = {2},
doi = {10.26493/1855-3974.494.88e},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.494.88e/}
}
TY - JOUR AU - Stephen Huggett AU - Israa Tawfik TI - Embedded graphs whose links have the largest possible number of components JO - Ars mathematica contemporanea PY - 2015 SP - 319 EP - 335 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.494.88e/ DO - 10.26493/1855-3974.494.88e LA - en ID - 10_26493_1855_3974_494_88e ER -
%0 Journal Article %A Stephen Huggett %A Israa Tawfik %T Embedded graphs whose links have the largest possible number of components %J Ars mathematica contemporanea %D 2015 %P 319-335 %V 8 %N 2 %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.494.88e/ %R 10.26493/1855-3974.494.88e %G en %F 10_26493_1855_3974_494_88e
Stephen Huggett; Israa Tawfik. Embedded graphs whose links have the largest possible number of components. Ars mathematica contemporanea, Tome 8 (2015) no. 2, pp. 319-335. doi: 10.26493/1855-3974.494.88e
Cité par Sources :