Commutators of cycles in permutation groups
Ars mathematica contemporanea, Tome 10 (2016) no. 1, pp. 67-77 Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website

Voir la notice de l'article

We prove that for n ≥ 5, every element of the alternating group An is a commutator of two cycles of An. Moreover we prove that for n ≥ 2, a (2n + 1)-cycle of the permutation group S2n + 1 is a commutator of a p-cycle and a q-cycle of S2n + 1 if and only if the following three conditions are satisfied (i) n + 1 ≤ p, q, (ii) 2n + 1 ≥ p, q, (iii) p + q ≥ 3n + 1.
DOI : 10.26493/1855-3974.430.eaf
Keywords: Commutator, cycle, permutation, alternating group.
@article{10_26493_1855_3974_430_eaf,
     author = {Ale\v{s} Vavpeti\v{c}},
     title = {
		{Commutators} of cycles in permutation groups
	},
     journal = {Ars mathematica contemporanea},
     pages = {67--77},
     year = {2016},
     volume = {10},
     number = {1},
     doi = {10.26493/1855-3974.430.eaf},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.430.eaf/}
}
TY  - JOUR
AU  - Aleš Vavpetič
TI  - Commutators of cycles in permutation groups
	
JO  - Ars mathematica contemporanea
PY  - 2016
SP  - 67
EP  - 77
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.430.eaf/
DO  - 10.26493/1855-3974.430.eaf
LA  - en
ID  - 10_26493_1855_3974_430_eaf
ER  - 
%0 Journal Article
%A Aleš Vavpetič
%T Commutators of cycles in permutation groups
	
%J Ars mathematica contemporanea
%D 2016
%P 67-77
%V 10
%N 1
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.430.eaf/
%R 10.26493/1855-3974.430.eaf
%G en
%F 10_26493_1855_3974_430_eaf
Aleš Vavpetič. Commutators of cycles in permutation groups. Ars mathematica contemporanea, Tome 10 (2016) no. 1, pp. 67-77. doi: 10.26493/1855-3974.430.eaf

Cité par Sources :