Commutators of cycles in permutation groups
Ars mathematica contemporanea, Tome 10 (2016) no. 1, pp. 67-77
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
We prove that for n ≥ 5, every element of the alternating group An is a commutator of two cycles of An. Moreover we prove that for n ≥ 2, a (2n + 1)-cycle of the permutation group S2n + 1 is a commutator of a p-cycle and a q-cycle of S2n + 1 if and only if the following three conditions are satisfied (i) n + 1 ≤ p, q, (ii) 2n + 1 ≥ p, q, (iii) p + q ≥ 3n + 1.
@article{10_26493_1855_3974_430_eaf,
author = {Ale\v{s} Vavpeti\v{c}},
title = {
{Commutators} of cycles in permutation groups
},
journal = {Ars mathematica contemporanea},
pages = {67--77},
year = {2016},
volume = {10},
number = {1},
doi = {10.26493/1855-3974.430.eaf},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.430.eaf/}
}
Aleš Vavpetič. Commutators of cycles in permutation groups. Ars mathematica contemporanea, Tome 10 (2016) no. 1, pp. 67-77. doi: 10.26493/1855-3974.430.eaf
Cité par Sources :