Commuting graphs and extremal centralizers
Ars mathematica contemporanea, Tome 7 (2014) no. 2, pp. 453-459
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
We determine the conditions for matrix centralizers which can guarantee the connectedness of the commuting graph for the full matrix algebra Mn(F) over an arbitrary field F. It is known that if F is an algebraically closed field and n ≥ 3, then the diameter of the commuting graph of Mn(F) is always equal to four. We construct a concrete example showing that if F is not algebraically closed, then the commuting graph of Mn(F) can be connected with the diameter at least five.
@article{10_26493_1855_3974_386_a83,
author = {Gregor Dolinar and Alexander Guterman and Bojan Kuzma and Polona Oblak},
title = {
{Commuting} graphs and extremal centralizers
},
journal = {Ars mathematica contemporanea},
pages = {453--459},
year = {2014},
volume = {7},
number = {2},
doi = {10.26493/1855-3974.386.a83},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.386.a83/}
}
TY - JOUR AU - Gregor Dolinar AU - Alexander Guterman AU - Bojan Kuzma AU - Polona Oblak TI - Commuting graphs and extremal centralizers JO - Ars mathematica contemporanea PY - 2014 SP - 453 EP - 459 VL - 7 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.386.a83/ DO - 10.26493/1855-3974.386.a83 LA - en ID - 10_26493_1855_3974_386_a83 ER -
%0 Journal Article %A Gregor Dolinar %A Alexander Guterman %A Bojan Kuzma %A Polona Oblak %T Commuting graphs and extremal centralizers %J Ars mathematica contemporanea %D 2014 %P 453-459 %V 7 %N 2 %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.386.a83/ %R 10.26493/1855-3974.386.a83 %G en %F 10_26493_1855_3974_386_a83
Gregor Dolinar; Alexander Guterman; Bojan Kuzma; Polona Oblak. Commuting graphs and extremal centralizers. Ars mathematica contemporanea, Tome 7 (2014) no. 2, pp. 453-459. doi: 10.26493/1855-3974.386.a83
Cité par Sources :