Linking Rings Structures and tetravalent semisymmetric graphs
Ars mathematica contemporanea, Tome 7 (2014) no. 2, pp. 341-352
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
In this paper, we introduce LR structures, a new and interesting form of symmetry in graphs. LR structures are motivated by the search for semisymmetric graphs of degree 4. We show that all semisymmetric graphs of girth and degree 4 can be constructed in a simple way from LR structures. We then show several ways in which LR structures can be constructed or found.
Keywords:
Graph, automorphism group, symmetry, locally arc-transitive graph, semisymmetric graph, cycle structure, linking rings structure
@article{10_26493_1855_3974_311_4a8,
author = {Primo\v{z} Poto\v{c}nik and Stephen E. Wilson},
title = {
{Linking} {Rings} {Structures} and tetravalent semisymmetric graphs
},
journal = {Ars mathematica contemporanea},
pages = {341--352},
year = {2014},
volume = {7},
number = {2},
doi = {10.26493/1855-3974.311.4a8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.311.4a8/}
}
TY - JOUR AU - Primož Potočnik AU - Stephen E. Wilson TI - Linking Rings Structures and tetravalent semisymmetric graphs JO - Ars mathematica contemporanea PY - 2014 SP - 341 EP - 352 VL - 7 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.311.4a8/ DO - 10.26493/1855-3974.311.4a8 LA - en ID - 10_26493_1855_3974_311_4a8 ER -
%0 Journal Article %A Primož Potočnik %A Stephen E. Wilson %T Linking Rings Structures and tetravalent semisymmetric graphs %J Ars mathematica contemporanea %D 2014 %P 341-352 %V 7 %N 2 %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.311.4a8/ %R 10.26493/1855-3974.311.4a8 %G en %F 10_26493_1855_3974_311_4a8
Primož Potočnik; Stephen E. Wilson. Linking Rings Structures and tetravalent semisymmetric graphs. Ars mathematica contemporanea, Tome 7 (2014) no. 2, pp. 341-352. doi: 10.26493/1855-3974.311.4a8
Cité par Sources :