Unordered multiplicity lists of wide double paths
Ars mathematica contemporanea, Tome 6 (2013) no. 2, pp. 279-288
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
Recently, Kim and Shader analyzed the multiplicities of the eigenvalues of a Φ-binary tree. We carry this discussion forward extending their results to a larger family of trees, namely, the wide double path, a tree consisting of two paths that are joined by another path. Some introductory considerations for dumbbell graphs are mentioned regarding the maximum multiplicity of the eigenvalues. Lastly, three research problems are formulated.
Keywords:
Graph, tree, matrix, eigenvalues, multiplicities, inverse eigenvalue problem
@article{10_26493_1855_3974_306_32d,
author = {Aleksandra Eri\'c and Carlos M. da Fonseca},
title = {
{Unordered} multiplicity lists of wide double paths
},
journal = {Ars mathematica contemporanea},
pages = {279--288},
year = {2013},
volume = {6},
number = {2},
doi = {10.26493/1855-3974.306.32d},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.306.32d/}
}
TY - JOUR AU - Aleksandra Erić AU - Carlos M. da Fonseca TI - Unordered multiplicity lists of wide double paths JO - Ars mathematica contemporanea PY - 2013 SP - 279 EP - 288 VL - 6 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.306.32d/ DO - 10.26493/1855-3974.306.32d LA - en ID - 10_26493_1855_3974_306_32d ER -
%0 Journal Article %A Aleksandra Erić %A Carlos M. da Fonseca %T Unordered multiplicity lists of wide double paths %J Ars mathematica contemporanea %D 2013 %P 279-288 %V 6 %N 2 %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.306.32d/ %R 10.26493/1855-3974.306.32d %G en %F 10_26493_1855_3974_306_32d
Aleksandra Erić; Carlos M. da Fonseca. Unordered multiplicity lists of wide double paths. Ars mathematica contemporanea, Tome 6 (2013) no. 2, pp. 279-288. doi: 10.26493/1855-3974.306.32d
Cité par Sources :