2-Groups that factorise as products of cyclic groups, and regular embeddings of complete bipartite graphs
Ars mathematica contemporanea, Tome 6 (2013) no. 1, pp. 155-170 Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website

Voir la notice de l'article

We classify those 2-groups G which factorise as a product of two disjoint cyclic subgroups A and B, transposed by an automorphism of order 2. The case where G is metacyclic having been dealt with elsewhere, we show that for each e ≥ 3 there are exactly three such non-metacyclic groups G with ∣A∣ = ∣B∣ = 2e, and for e = 2 there is one. These groups appear in a classification by Berkovich and Janko of 2-groups with one non-metacyclic maximal subgroup; we enumerate these groups, give simpler presentations for them, and determine their automorphism groups.
DOI : 10.26493/1855-3974.295.270
Keywords: Regular map, complete bipartite graph, product of cyclic groups.
@article{10_26493_1855_3974_295_270,
     author = {Shaofei Du and Gareth Jones and Jin Ho Kwak and Roman Nedela and Martin \v{S}koviera},
     title = {
		{2-Groups} that factorise as products of cyclic groups, and regular embeddings of complete bipartite graphs
	},
     journal = {Ars mathematica contemporanea},
     pages = {155--170},
     year = {2013},
     volume = {6},
     number = {1},
     doi = {10.26493/1855-3974.295.270},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.295.270/}
}
TY  - JOUR
AU  - Shaofei Du
AU  - Gareth Jones
AU  - Jin Ho Kwak
AU  - Roman Nedela
AU  - Martin Škoviera
TI  - 2-Groups that factorise as products of cyclic groups, and regular embeddings of complete bipartite graphs
	
JO  - Ars mathematica contemporanea
PY  - 2013
SP  - 155
EP  - 170
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.295.270/
DO  - 10.26493/1855-3974.295.270
LA  - en
ID  - 10_26493_1855_3974_295_270
ER  - 
%0 Journal Article
%A Shaofei Du
%A Gareth Jones
%A Jin Ho Kwak
%A Roman Nedela
%A Martin Škoviera
%T 2-Groups that factorise as products of cyclic groups, and regular embeddings of complete bipartite graphs
	
%J Ars mathematica contemporanea
%D 2013
%P 155-170
%V 6
%N 1
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.295.270/
%R 10.26493/1855-3974.295.270
%G en
%F 10_26493_1855_3974_295_270
Shaofei Du; Gareth Jones; Jin Ho Kwak; Roman Nedela; Martin Škoviera. 2-Groups that factorise as products of cyclic groups, and regular embeddings of complete bipartite graphs. Ars mathematica contemporanea, Tome 6 (2013) no. 1, pp. 155-170. doi: 10.26493/1855-3974.295.270

Cité par Sources :