2-Groups that factorise as products of cyclic groups, and regular embeddings of complete bipartite graphs
Ars mathematica contemporanea, Tome 6 (2013) no. 1, pp. 155-170
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
We classify those 2-groups G which factorise as a product of two disjoint cyclic subgroups A and B, transposed by an automorphism of order 2. The case where G is metacyclic having been dealt with elsewhere, we show that for each e ≥ 3 there are exactly three such non-metacyclic groups G with ∣A∣ = ∣B∣ = 2e, and for e = 2 there is one. These groups appear in a classification by Berkovich and Janko of 2-groups with one non-metacyclic maximal subgroup; we enumerate these groups, give simpler presentations for them, and determine their automorphism groups.
Keywords:
Regular map, complete bipartite graph, product of cyclic groups.
@article{10_26493_1855_3974_295_270,
author = {Shaofei Du and Gareth Jones and Jin Ho Kwak and Roman Nedela and Martin \v{S}koviera},
title = {
{2-Groups} that factorise as products of cyclic groups, and regular embeddings of complete bipartite graphs
},
journal = {Ars mathematica contemporanea},
pages = {155--170},
year = {2013},
volume = {6},
number = {1},
doi = {10.26493/1855-3974.295.270},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.295.270/}
}
TY - JOUR AU - Shaofei Du AU - Gareth Jones AU - Jin Ho Kwak AU - Roman Nedela AU - Martin Škoviera TI - 2-Groups that factorise as products of cyclic groups, and regular embeddings of complete bipartite graphs JO - Ars mathematica contemporanea PY - 2013 SP - 155 EP - 170 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.295.270/ DO - 10.26493/1855-3974.295.270 LA - en ID - 10_26493_1855_3974_295_270 ER -
%0 Journal Article %A Shaofei Du %A Gareth Jones %A Jin Ho Kwak %A Roman Nedela %A Martin Škoviera %T 2-Groups that factorise as products of cyclic groups, and regular embeddings of complete bipartite graphs %J Ars mathematica contemporanea %D 2013 %P 155-170 %V 6 %N 1 %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.295.270/ %R 10.26493/1855-3974.295.270 %G en %F 10_26493_1855_3974_295_270
Shaofei Du; Gareth Jones; Jin Ho Kwak; Roman Nedela; Martin Škoviera. 2-Groups that factorise as products of cyclic groups, and regular embeddings of complete bipartite graphs. Ars mathematica contemporanea, Tome 6 (2013) no. 1, pp. 155-170. doi: 10.26493/1855-3974.295.270
Cité par Sources :