A note on a conjecture on consistent cycles
Ars mathematica contemporanea, Tome 6 (2013) no. 2, pp. 389-392 Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website

Voir la notice de l'article

Let Γ denote a finite digraph and let G be a subgroup of its automorphism group. A directed cycle C of Γ is called G-consistent whenever there is an element of G whose restriction to C is the 1-step rotation of C. In this short note we prove a conjecture on G-consistent directed cycles stated by Steve Wilson.
DOI : 10.26493/1855-3974.294.174
Keywords: Digraphs, consistent directed cycles
@article{10_26493_1855_3974_294_174,
     author = {\v{S}tefko Miklavi\v{c}},
     title = {
		{A} note on a conjecture on consistent cycles
	},
     journal = {Ars mathematica contemporanea},
     pages = {389--392},
     year = {2013},
     volume = {6},
     number = {2},
     doi = {10.26493/1855-3974.294.174},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.294.174/}
}
TY  - JOUR
AU  - Štefko Miklavič
TI  - A note on a conjecture on consistent cycles
	
JO  - Ars mathematica contemporanea
PY  - 2013
SP  - 389
EP  - 392
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.294.174/
DO  - 10.26493/1855-3974.294.174
LA  - en
ID  - 10_26493_1855_3974_294_174
ER  - 
%0 Journal Article
%A Štefko Miklavič
%T A note on a conjecture on consistent cycles
	
%J Ars mathematica contemporanea
%D 2013
%P 389-392
%V 6
%N 2
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.294.174/
%R 10.26493/1855-3974.294.174
%G en
%F 10_26493_1855_3974_294_174
Štefko Miklavič. A note on a conjecture on consistent cycles. Ars mathematica contemporanea, Tome 6 (2013) no. 2, pp. 389-392. doi: 10.26493/1855-3974.294.174

Cité par Sources :