A note on a conjecture on consistent cycles
Ars mathematica contemporanea, Tome 6 (2013) no. 2, pp. 389-392
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
Let Γ denote a finite digraph and let G be a subgroup of its automorphism group. A directed cycle C of Γ is called G-consistent whenever there is an element of G whose restriction to C is the 1-step rotation of C. In this short note we prove a conjecture on G-consistent directed cycles stated by Steve Wilson.
@article{10_26493_1855_3974_294_174,
author = {\v{S}tefko Miklavi\v{c}},
title = {
{A} note on a conjecture on consistent cycles
},
journal = {Ars mathematica contemporanea},
pages = {389--392},
year = {2013},
volume = {6},
number = {2},
doi = {10.26493/1855-3974.294.174},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.294.174/}
}
TY - JOUR AU - Štefko Miklavič TI - A note on a conjecture on consistent cycles JO - Ars mathematica contemporanea PY - 2013 SP - 389 EP - 392 VL - 6 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.294.174/ DO - 10.26493/1855-3974.294.174 LA - en ID - 10_26493_1855_3974_294_174 ER -
Štefko Miklavič. A note on a conjecture on consistent cycles. Ars mathematica contemporanea, Tome 6 (2013) no. 2, pp. 389-392. doi: 10.26493/1855-3974.294.174
Cité par Sources :