Characterization of a family of rotationally symmetric spherical quadrangulations
Ars mathematica contemporanea, Tome 22 (2022) no. 2, article no. 10, 35 p. Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website

Voir la notice de l'article

A spherical quadrangulation is an embedding of a graph G in the sphere in which each facial boundary walk has length four. Vertices that are not of degree four in G are called curvature vertices. In this paper we classify all spherical quadrangulations with n-fold rotational symmetry (n ≥ 3) that have minimum degree 3 and the least possible number of curvature vertices, and describe all such spherical quadrangulations in terms of nets of quadrilaterals. The description reveals that such rotationally symmetric quadrangulations necessarily also have a pole-exchanging symmetry.
DOI : 10.26493/1855-3974.2433.ba6
Keywords: Quadrangulation, spherical quadrangulation, rotational symmetry
@article{10_26493_1855_3974_2433_ba6,
     author = {Lowell Abrams and Daniel Slilaty},
     title = {
		{Characterization} of a family of rotationally symmetric spherical quadrangulations
	},
     journal = {Ars mathematica contemporanea},
     eid = {10},
     year = {2022},
     volume = {22},
     number = {2},
     doi = {10.26493/1855-3974.2433.ba6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2433.ba6/}
}
TY  - JOUR
AU  - Lowell Abrams
AU  - Daniel Slilaty
TI  - Characterization of a family of rotationally symmetric spherical quadrangulations
	
JO  - Ars mathematica contemporanea
PY  - 2022
VL  - 22
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2433.ba6/
DO  - 10.26493/1855-3974.2433.ba6
LA  - en
ID  - 10_26493_1855_3974_2433_ba6
ER  - 
%0 Journal Article
%A Lowell Abrams
%A Daniel Slilaty
%T Characterization of a family of rotationally symmetric spherical quadrangulations
	
%J Ars mathematica contemporanea
%D 2022
%V 22
%N 2
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.2433.ba6/
%R 10.26493/1855-3974.2433.ba6
%G en
%F 10_26493_1855_3974_2433_ba6
Lowell Abrams; Daniel Slilaty. Characterization of a family of rotationally symmetric spherical quadrangulations. Ars mathematica contemporanea, Tome 22 (2022) no. 2, article  no. 10, 35 p.. doi: 10.26493/1855-3974.2433.ba6

Cité par Sources :