On regular and equivelar Leonardo polyhedra
Ars mathematica contemporanea, Tome 6 (2013) no. 1, pp. 1-11
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
A Leonardo polyhedron is a 2-manifold without boundary, embedded in Euclidean 3-space E3, built up of convex polygons and with the geometric symmetry (or rotation) group of a Platonic solid and of genus g ≥ 2. The polyhedra are named in honour of Leonardo's famous illustrations in [1] (cf. also [2]). Only six combinatorially regular Leonardo polyhedra are known: Coxeter's four regular skew polyhedra, and the polyhedral realizations of the regular maps by Klein of genus 3 and by Fricke and Klein of genus 5. In this paper we construct infinite series of equivelar (i.e. locally regular) Leonardo polyhedra, which share some properties with the regular ones, namely the same Schläfli symbols and related topological structure. So the weaker condition of local regularity allows a much greater variety of symmetric polyhedra.[1] L. Pacioli, De Divina Proportione (Disegni di Leonardo da Vinci 1500-1503), Faksimile Dominiani, Como, 1967. [2] D. Huylebrouk, Lost in triangulation: Leonardo da Vinci's mathematical slip-up, Scientific American, March 29, 2011.
Keywords:
Equivelar polyhedron, Leonardo polyhedron, regular polyhedron, genus, Schläfli symbol, symmetry group.
@article{10_26493_1855_3974_219_440,
author = {G\'abor G\'evay and J\"org M. Wills},
title = {
{On} regular and equivelar {Leonardo} polyhedra
},
journal = {Ars mathematica contemporanea},
pages = {1--11},
year = {2013},
volume = {6},
number = {1},
doi = {10.26493/1855-3974.219.440},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.219.440/}
}
TY - JOUR AU - Gábor Gévay AU - Jörg M. Wills TI - On regular and equivelar Leonardo polyhedra JO - Ars mathematica contemporanea PY - 2013 SP - 1 EP - 11 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.219.440/ DO - 10.26493/1855-3974.219.440 LA - en ID - 10_26493_1855_3974_219_440 ER -
Gábor Gévay; Jörg M. Wills. On regular and equivelar Leonardo polyhedra. Ars mathematica contemporanea, Tome 6 (2013) no. 1, pp. 1-11. doi: 10.26493/1855-3974.219.440
Cité par Sources :