Classification of cubic vertex-transitive tricirculants
Ars mathematica contemporanea, Tome 18 (2020) no. 1, pp. 1-31 Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website

Voir la notice de l'article

A finite graph is called a tricirculant if admits a cyclic group of automorphism which has precisely three orbits on the vertex-set of the graph, all of equal size. We classify all finite connected cubic vertex-transitive tricirculants. We show that except for some small exceptions of order less than 54, each of these graphs is either a prism of order 6k with k odd, a Möbius ladder, or it falls into one of two infinite families, each family containing one graph for every order of the form 6k with k odd.
DOI : 10.26493/1855-3974.1815.b52
Keywords: Graph, cubic, semiregular automorphism, tricirculant, vertex-transitive
@article{10_26493_1855_3974_1815_b52,
     author = {Primo\v{z} Poto\v{c}nik and Micael Toledo},
     title = {
		{Classification} of cubic vertex-transitive tricirculants
	},
     journal = {Ars mathematica contemporanea},
     pages = {1--31},
     year = {2020},
     volume = {18},
     number = {1},
     doi = {10.26493/1855-3974.1815.b52},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1815.b52/}
}
TY  - JOUR
AU  - Primož Potočnik
AU  - Micael Toledo
TI  - Classification of cubic vertex-transitive tricirculants
	
JO  - Ars mathematica contemporanea
PY  - 2020
SP  - 1
EP  - 31
VL  - 18
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1815.b52/
DO  - 10.26493/1855-3974.1815.b52
LA  - en
ID  - 10_26493_1855_3974_1815_b52
ER  - 
%0 Journal Article
%A Primož Potočnik
%A Micael Toledo
%T Classification of cubic vertex-transitive tricirculants
	
%J Ars mathematica contemporanea
%D 2020
%P 1-31
%V 18
%N 1
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1815.b52/
%R 10.26493/1855-3974.1815.b52
%G en
%F 10_26493_1855_3974_1815_b52
Primož Potočnik; Micael Toledo. Classification of cubic vertex-transitive tricirculants. Ars mathematica contemporanea, Tome 18 (2020) no. 1, pp. 1-31. doi: 10.26493/1855-3974.1815.b52

Cité par Sources :