Regular self-dual and self-Petrie-dual maps of arbitrary valency
Ars mathematica contemporanea, Tome 16 (2019) no. 2, pp. 403-410
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
The existence of a regular, self-dual and self-Petrie-dual map of any given even valency has been proved by D. Archdeacon, M. Conder and J. Širáň (2014). In this paper we extend this result to any odd valency ≥ 5. This is done using algebraic number theory and maps defined on the groups PSL(2, p) in the case of odd prime valency ≥ 5 and valency 9, and using coverings for the remaining odd valencies.
Keywords:
Regular map, automorphism group, self-dual map, self-Petrie-dual map
@article{10_26493_1855_3974_1749_84e,
author = {Jay Fraser and Olivia Jeans and Jozef \v{S}ir\'a\v{n}},
title = {
{Regular} self-dual and {self-Petrie-dual} maps of arbitrary valency
},
journal = {Ars mathematica contemporanea},
pages = {403--410},
year = {2019},
volume = {16},
number = {2},
doi = {10.26493/1855-3974.1749.84e},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1749.84e/}
}
TY - JOUR AU - Jay Fraser AU - Olivia Jeans AU - Jozef Širáň TI - Regular self-dual and self-Petrie-dual maps of arbitrary valency JO - Ars mathematica contemporanea PY - 2019 SP - 403 EP - 410 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1749.84e/ DO - 10.26493/1855-3974.1749.84e LA - en ID - 10_26493_1855_3974_1749_84e ER -
%0 Journal Article %A Jay Fraser %A Olivia Jeans %A Jozef Širáň %T Regular self-dual and self-Petrie-dual maps of arbitrary valency %J Ars mathematica contemporanea %D 2019 %P 403-410 %V 16 %N 2 %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1749.84e/ %R 10.26493/1855-3974.1749.84e %G en %F 10_26493_1855_3974_1749_84e
Jay Fraser; Olivia Jeans; Jozef Širáň. Regular self-dual and self-Petrie-dual maps of arbitrary valency. Ars mathematica contemporanea, Tome 16 (2019) no. 2, pp. 403-410. doi: 10.26493/1855-3974.1749.84e
Cité par Sources :