Regular self-dual and self-Petrie-dual maps of arbitrary valency
Ars mathematica contemporanea, Tome 16 (2019) no. 2, pp. 403-410 Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website

Voir la notice de l'article

The existence of a regular, self-dual and self-Petrie-dual map of any given even valency has been proved by D. Archdeacon, M. Conder and J. Širáň (2014). In this paper we extend this result to any odd valency ≥ 5. This is done using algebraic number theory and maps defined on the groups PSL(2, p) in the case of odd prime valency ≥ 5 and valency 9, and using coverings for the remaining odd valencies.
DOI : 10.26493/1855-3974.1749.84e
Keywords: Regular map, automorphism group, self-dual map, self-Petrie-dual map
@article{10_26493_1855_3974_1749_84e,
     author = {Jay Fraser and Olivia Jeans and Jozef \v{S}ir\'a\v{n}},
     title = {
		{Regular} self-dual and {self-Petrie-dual} maps of arbitrary valency
	},
     journal = {Ars mathematica contemporanea},
     pages = {403--410},
     year = {2019},
     volume = {16},
     number = {2},
     doi = {10.26493/1855-3974.1749.84e},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1749.84e/}
}
TY  - JOUR
AU  - Jay Fraser
AU  - Olivia Jeans
AU  - Jozef Širáň
TI  - Regular self-dual and self-Petrie-dual maps of arbitrary valency
	
JO  - Ars mathematica contemporanea
PY  - 2019
SP  - 403
EP  - 410
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1749.84e/
DO  - 10.26493/1855-3974.1749.84e
LA  - en
ID  - 10_26493_1855_3974_1749_84e
ER  - 
%0 Journal Article
%A Jay Fraser
%A Olivia Jeans
%A Jozef Širáň
%T Regular self-dual and self-Petrie-dual maps of arbitrary valency
	
%J Ars mathematica contemporanea
%D 2019
%P 403-410
%V 16
%N 2
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1749.84e/
%R 10.26493/1855-3974.1749.84e
%G en
%F 10_26493_1855_3974_1749_84e
Jay Fraser; Olivia Jeans; Jozef Širáň. Regular self-dual and self-Petrie-dual maps of arbitrary valency. Ars mathematica contemporanea, Tome 16 (2019) no. 2, pp. 403-410. doi: 10.26493/1855-3974.1749.84e

Cité par Sources :