Minimum cycle bases of lexicographic products
Ars mathematica contemporanea, Tome 5 (2012) no. 2, pp. 223-234
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
Minimum cycle bases of product graphs can in most situations be constructedfrom minimum cycle bases of the factors together with a suitable collectionof triangles and/or quadrangles determined by the product operation. Herewe give an explicit construction for the lexicographic product G o H that generalizes results by Berger and Jaradat to the case that H is notconnected.
@article{10_26493_1855_3974_172_8a7,
author = {Marc Hellmuth and Philipp-Jens Ostermeier and Peter F. Stadler},
title = {
{Minimum} cycle bases of lexicographic products
},
journal = {Ars mathematica contemporanea},
pages = {223--234},
year = {2012},
volume = {5},
number = {2},
doi = {10.26493/1855-3974.172.8a7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.172.8a7/}
}
TY - JOUR AU - Marc Hellmuth AU - Philipp-Jens Ostermeier AU - Peter F. Stadler TI - Minimum cycle bases of lexicographic products JO - Ars mathematica contemporanea PY - 2012 SP - 223 EP - 234 VL - 5 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.172.8a7/ DO - 10.26493/1855-3974.172.8a7 LA - en ID - 10_26493_1855_3974_172_8a7 ER -
%0 Journal Article %A Marc Hellmuth %A Philipp-Jens Ostermeier %A Peter F. Stadler %T Minimum cycle bases of lexicographic products %J Ars mathematica contemporanea %D 2012 %P 223-234 %V 5 %N 2 %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.172.8a7/ %R 10.26493/1855-3974.172.8a7 %G en %F 10_26493_1855_3974_172_8a7
Marc Hellmuth; Philipp-Jens Ostermeier; Peter F. Stadler. Minimum cycle bases of lexicographic products. Ars mathematica contemporanea, Tome 5 (2012) no. 2, pp. 223-234. doi: 10.26493/1855-3974.172.8a7
Cité par Sources :