Maximum independent sets of the 120-cell and other regular polytopes
Ars mathematica contemporanea, Tome 6 (2013) no. 2, pp. 197-210
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
A d-code in a graph is a set of vertices such that all pairwise distances are at least d. As part of a study of d-codes of three-and four-dimensional regular polytopes, the maximum independent set order of the 120-cell is calculated. A linear program based on counting arguments leads to an upper bound of 221. An independent set of order 110 in the antipodal collapse of the 120-cell (also known as the hemi-120-cell) gives a lower bound of 220 for the 120-cell itself. The gap is closed by the computation described here, with the result that the maximum independent set order of the 120-cell is 220. All maximum d-code orders of the icosahedron, dodecahedron, 24-cell, 600-cell and 120-cell are reported.
@article{10_26493_1855_3974_170_fd8,
author = {Sean Debroni and Erin Delisle and Wendy Myrvold and Amit Sethi and Joseph Whitney and Jennifer Woodcock and Patrick W. Fowler and Benoit de La Vaissiere and Michel Marie Deza},
title = {
{Maximum} independent sets of the 120-cell and other regular polytopes
},
journal = {Ars mathematica contemporanea},
pages = {197--210},
year = {2013},
volume = {6},
number = {2},
doi = {10.26493/1855-3974.170.fd8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.170.fd8/}
}
TY - JOUR AU - Sean Debroni AU - Erin Delisle AU - Wendy Myrvold AU - Amit Sethi AU - Joseph Whitney AU - Jennifer Woodcock AU - Patrick W. Fowler AU - Benoit de La Vaissiere AU - Michel Marie Deza TI - Maximum independent sets of the 120-cell and other regular polytopes JO - Ars mathematica contemporanea PY - 2013 SP - 197 EP - 210 VL - 6 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.170.fd8/ DO - 10.26493/1855-3974.170.fd8 LA - en ID - 10_26493_1855_3974_170_fd8 ER -
%0 Journal Article %A Sean Debroni %A Erin Delisle %A Wendy Myrvold %A Amit Sethi %A Joseph Whitney %A Jennifer Woodcock %A Patrick W. Fowler %A Benoit de La Vaissiere %A Michel Marie Deza %T Maximum independent sets of the 120-cell and other regular polytopes %J Ars mathematica contemporanea %D 2013 %P 197-210 %V 6 %N 2 %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.170.fd8/ %R 10.26493/1855-3974.170.fd8 %G en %F 10_26493_1855_3974_170_fd8
Sean Debroni; Erin Delisle; Wendy Myrvold; Amit Sethi; Joseph Whitney; Jennifer Woodcock; Patrick W. Fowler; Benoit de La Vaissiere; Michel Marie Deza. Maximum independent sets of the 120-cell and other regular polytopes. Ars mathematica contemporanea, Tome 6 (2013) no. 2, pp. 197-210. doi: 10.26493/1855-3974.170.fd8
Cité par Sources :