Maximum independent sets of the 120-cell and other regular polytopes
Ars mathematica contemporanea, Tome 6 (2013) no. 2, pp. 197-210 Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website

Voir la notice de l'article

A d-code in a graph is a set of vertices such that all pairwise distances are at least d. As part of a study of d-codes of three-and four-dimensional regular polytopes, the maximum independent set order of the 120-cell is calculated. A linear program based on counting arguments leads to an upper bound of 221. An independent set of order 110 in the antipodal collapse of the 120-cell (also known as the hemi-120-cell) gives a lower bound of 220 for the 120-cell itself. The gap is closed by the computation described here, with the result that the maximum independent set order of the 120-cell is 220. All maximum d-code orders of the icosahedron, dodecahedron, 24-cell, 600-cell and 120-cell are reported.
DOI : 10.26493/1855-3974.170.fd8
Keywords: Independent sets, graphs, polyhedra, polytopes
@article{10_26493_1855_3974_170_fd8,
     author = {Sean Debroni and Erin Delisle and Wendy Myrvold and Amit Sethi and Joseph Whitney and Jennifer Woodcock and Patrick W. Fowler and Benoit de La Vaissiere and Michel Marie Deza},
     title = {
		{Maximum} independent sets of the 120-cell and other regular polytopes
	},
     journal = {Ars mathematica contemporanea},
     pages = {197--210},
     year = {2013},
     volume = {6},
     number = {2},
     doi = {10.26493/1855-3974.170.fd8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.170.fd8/}
}
TY  - JOUR
AU  - Sean Debroni
AU  - Erin Delisle
AU  - Wendy Myrvold
AU  - Amit Sethi
AU  - Joseph Whitney
AU  - Jennifer Woodcock
AU  - Patrick W. Fowler
AU  - Benoit de La Vaissiere
AU  - Michel Marie Deza
TI  - Maximum independent sets of the 120-cell and other regular polytopes
	
JO  - Ars mathematica contemporanea
PY  - 2013
SP  - 197
EP  - 210
VL  - 6
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.170.fd8/
DO  - 10.26493/1855-3974.170.fd8
LA  - en
ID  - 10_26493_1855_3974_170_fd8
ER  - 
%0 Journal Article
%A Sean Debroni
%A Erin Delisle
%A Wendy Myrvold
%A Amit Sethi
%A Joseph Whitney
%A Jennifer Woodcock
%A Patrick W. Fowler
%A Benoit de La Vaissiere
%A Michel Marie Deza
%T Maximum independent sets of the 120-cell and other regular polytopes
	
%J Ars mathematica contemporanea
%D 2013
%P 197-210
%V 6
%N 2
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.170.fd8/
%R 10.26493/1855-3974.170.fd8
%G en
%F 10_26493_1855_3974_170_fd8
Sean Debroni; Erin Delisle; Wendy Myrvold; Amit Sethi; Joseph Whitney; Jennifer Woodcock; Patrick W. Fowler; Benoit de La Vaissiere; Michel Marie Deza. Maximum independent sets of the 120-cell and other regular polytopes. Ars mathematica contemporanea, Tome 6 (2013) no. 2, pp. 197-210. doi: 10.26493/1855-3974.170.fd8

Cité par Sources :