Splittable and unsplittable graphs and configurations
Ars mathematica contemporanea, Tome 16 (2019) no. 1, pp. 1-17
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
We prove that there exist infinitely many splittable and also infinitely many unsplittable cyclic (n3) configurations. We also present a complete study of trivalent cyclic Haar graphs on at most 60 vertices with respect to splittability. Finally, we show that all cyclic flag-transitive configurations with the exception of the Fano plane and the Möbius-Kantor configuration are splittable.
Keywords:
Configuration of points and lines, unsplittable configuration, unsplittable graph, independent set, Levi graph, Grünbaum graph, splitting type, cyclic Haar graph
@article{10_26493_1855_3974_1467_04b,
author = {Nino Ba\v{s}i\'c and Jan Gro\v{s}elj and Branko Gr\"unbaum and Toma\v{z} Pisanski},
title = {
{Splittable} and unsplittable graphs and configurations
},
journal = {Ars mathematica contemporanea},
pages = {1--17},
year = {2019},
volume = {16},
number = {1},
doi = {10.26493/1855-3974.1467.04b},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1467.04b/}
}
TY - JOUR AU - Nino Bašić AU - Jan Grošelj AU - Branko Grünbaum AU - Tomaž Pisanski TI - Splittable and unsplittable graphs and configurations JO - Ars mathematica contemporanea PY - 2019 SP - 1 EP - 17 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1467.04b/ DO - 10.26493/1855-3974.1467.04b LA - en ID - 10_26493_1855_3974_1467_04b ER -
%0 Journal Article %A Nino Bašić %A Jan Grošelj %A Branko Grünbaum %A Tomaž Pisanski %T Splittable and unsplittable graphs and configurations %J Ars mathematica contemporanea %D 2019 %P 1-17 %V 16 %N 1 %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1467.04b/ %R 10.26493/1855-3974.1467.04b %G en %F 10_26493_1855_3974_1467_04b
Nino Bašić; Jan Grošelj; Branko Grünbaum; Tomaž Pisanski. Splittable and unsplittable graphs and configurations. Ars mathematica contemporanea, Tome 16 (2019) no. 1, pp. 1-17. doi: 10.26493/1855-3974.1467.04b
Cité par Sources :