A note on the thickness of some complete bipartite graphs
Ars mathematica contemporanea, Tome 14 (2018) no. 2, pp. 329-344 Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website

Voir la notice de l'article

The thickness of a graph is the minimum number of planar subgraphs into which the graph can be decomposed. Determining the thickness for the complete bipartite graph is an unsolved problem in graph theory for over fifty years. Using a new planar decomposition for K4k − 4, 4k (k ≥ 4), we obtain the thickness of the complete bipartite graph Kn, n + 4, for n ≥ 1.
DOI : 10.26493/1855-3974.1236.4d7
Keywords: Planar graph, thickness, complete bipartite graph
@article{10_26493_1855_3974_1236_4d7,
     author = {Siwei Hu and Yichao Chen},
     title = {
		{A} note on the thickness of some complete bipartite graphs
	},
     journal = {Ars mathematica contemporanea},
     pages = {329--344},
     year = {2018},
     volume = {14},
     number = {2},
     doi = {10.26493/1855-3974.1236.4d7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1236.4d7/}
}
TY  - JOUR
AU  - Siwei Hu
AU  - Yichao Chen
TI  - A note on the thickness of some complete bipartite graphs
	
JO  - Ars mathematica contemporanea
PY  - 2018
SP  - 329
EP  - 344
VL  - 14
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1236.4d7/
DO  - 10.26493/1855-3974.1236.4d7
LA  - en
ID  - 10_26493_1855_3974_1236_4d7
ER  - 
%0 Journal Article
%A Siwei Hu
%A Yichao Chen
%T A note on the thickness of some complete bipartite graphs
	
%J Ars mathematica contemporanea
%D 2018
%P 329-344
%V 14
%N 2
%U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1236.4d7/
%R 10.26493/1855-3974.1236.4d7
%G en
%F 10_26493_1855_3974_1236_4d7
Siwei Hu; Yichao Chen. A note on the thickness of some complete bipartite graphs. Ars mathematica contemporanea, Tome 14 (2018) no. 2, pp. 329-344. doi: 10.26493/1855-3974.1236.4d7

Cité par Sources :