A note on the thickness of some complete bipartite graphs
Ars mathematica contemporanea, Tome 14 (2018) no. 2, pp. 329-344
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
The thickness of a graph is the minimum number of planar subgraphs into which the graph can be decomposed. Determining the thickness for the complete bipartite graph is an unsolved problem in graph theory for over fifty years. Using a new planar decomposition for K4k − 4, 4k (k ≥ 4), we obtain the thickness of the complete bipartite graph Kn, n + 4, for n ≥ 1.
@article{10_26493_1855_3974_1236_4d7,
author = {Siwei Hu and Yichao Chen},
title = {
{A} note on the thickness of some complete bipartite graphs
},
journal = {Ars mathematica contemporanea},
pages = {329--344},
year = {2018},
volume = {14},
number = {2},
doi = {10.26493/1855-3974.1236.4d7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1236.4d7/}
}
TY - JOUR AU - Siwei Hu AU - Yichao Chen TI - A note on the thickness of some complete bipartite graphs JO - Ars mathematica contemporanea PY - 2018 SP - 329 EP - 344 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1236.4d7/ DO - 10.26493/1855-3974.1236.4d7 LA - en ID - 10_26493_1855_3974_1236_4d7 ER -
%0 Journal Article %A Siwei Hu %A Yichao Chen %T A note on the thickness of some complete bipartite graphs %J Ars mathematica contemporanea %D 2018 %P 329-344 %V 14 %N 2 %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1236.4d7/ %R 10.26493/1855-3974.1236.4d7 %G en %F 10_26493_1855_3974_1236_4d7
Siwei Hu; Yichao Chen. A note on the thickness of some complete bipartite graphs. Ars mathematica contemporanea, Tome 14 (2018) no. 2, pp. 329-344. doi: 10.26493/1855-3974.1236.4d7
Cité par Sources :