On which groups can arise as the canonical group of a spherical latin bitrade
Ars mathematica contemporanea, Tome 13 (2017) no. 1, pp. 167-185
Cet article a éte moissonné depuis la source Ars Mathematica Contemporanea website
We address a question of Cavenagh and Wanless asking: which finite abelian groups arise as the canonical group of a spherical latin bitrade? We prove the existence of an infinite family of finite abelian groups that do not arise as canonical groups of spherical latin bitrades. Using a connection between abelian sandpile groups of digraphs underlying directed Eulerian spherical embeddings, we go on to provide several, general, families of finite abelian groups that do arise as canonical groups. These families include:any abelian group in which each component of the Smith Normal Form has composite order;any abelian group with Smith Normal Form Zpn ⊕ (⨁ i = 1kZpai), where 1 ≤ k, 2 ≤ a1, a2, …, ak, p and n ≤ 1 + 2∑ i = 1k(ai − 1); andwith two exceptions and two potential exceptions any abelian group of rank two.
Keywords:
Spherical latin bitrade, canonical group, abelian sand-pile group
@article{10_26493_1855_3974_1141_e42,
author = {Kyle Bonetta-Martin and Thomas A. McCourt},
title = {
{On} which groups can arise as the canonical group of a spherical latin bitrade
},
journal = {Ars mathematica contemporanea},
pages = {167--185},
year = {2017},
volume = {13},
number = {1},
doi = {10.26493/1855-3974.1141.e42},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1141.e42/}
}
TY - JOUR AU - Kyle Bonetta-Martin AU - Thomas A. McCourt TI - On which groups can arise as the canonical group of a spherical latin bitrade JO - Ars mathematica contemporanea PY - 2017 SP - 167 EP - 185 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1141.e42/ DO - 10.26493/1855-3974.1141.e42 LA - en ID - 10_26493_1855_3974_1141_e42 ER -
%0 Journal Article %A Kyle Bonetta-Martin %A Thomas A. McCourt %T On which groups can arise as the canonical group of a spherical latin bitrade %J Ars mathematica contemporanea %D 2017 %P 167-185 %V 13 %N 1 %U http://geodesic.mathdoc.fr/articles/10.26493/1855-3974.1141.e42/ %R 10.26493/1855-3974.1141.e42 %G en %F 10_26493_1855_3974_1141_e42
Kyle Bonetta-Martin; Thomas A. McCourt. On which groups can arise as the canonical group of a spherical latin bitrade. Ars mathematica contemporanea, Tome 13 (2017) no. 1, pp. 167-185. doi: 10.26493/1855-3974.1141.e42
Cité par Sources :