A Note on Graphs of Dichromatic Number 2
Discrete mathematics & theoretical computer science, Tome 22 (2020-2021) no. 4
Voir la notice de l'article provenant de la source Episciences
Neumann-Lara and Škrekovski conjectured that every planar digraph is 2-colourable. We show that this conjecture is equivalent to the more general statement that all oriented K_5-minor-free graphs are 2-colourable.
@article{DMTCS_2020_22_4_a10,
author = {Steiner, Raphael},
title = {A {Note} on {Graphs} of {Dichromatic} {Number} 2},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {22},
number = {4},
year = {2020-2021},
doi = {10.23638/DMTCS-22-4-11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-4-11/}
}
TY - JOUR AU - Steiner, Raphael TI - A Note on Graphs of Dichromatic Number 2 JO - Discrete mathematics & theoretical computer science PY - 2020-2021 VL - 22 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-4-11/ DO - 10.23638/DMTCS-22-4-11 LA - en ID - DMTCS_2020_22_4_a10 ER -
Steiner, Raphael. A Note on Graphs of Dichromatic Number 2. Discrete mathematics & theoretical computer science, Tome 22 (2020-2021) no. 4. doi: 10.23638/DMTCS-22-4-11
Cité par Sources :