The 3-way flower intersection problem for Steiner triple systems
Discrete mathematics & theoretical computer science, Tome 22 (2020-2021) no. 1.

Voir la notice de l'article provenant de la source Episciences

The flower at a point x in a Steiner triple system (X; B) is the set of all triples containing x. Denote by J3F(r) the set of all integers k such that there exists a collection of three STS(2r+1) mutually intersecting in the same set of k + r triples, r of them being the triples of a common flower. In this article we determine the set J3F(r) for any positive integer r = 0, 1 (mod 3) (only some cases are left undecided for r = 6, 7, 9, 24), and establish that J3F(r) = I3F(r) for r = 0, 1 (mod 3) where I3F(r) = {0, 1,..., 2r(r-1)/3-8, 2r(r-1)/3-6, 2r(r-1)/3}.
DOI : 10.23638/DMTCS-22-1-5
Classification : 05B07
@article{DMTCS_2020_22_1_a8,
     author = {Amjadi, H. and Soltankhah, N.},
     title = {The 3-way flower intersection problem for {Steiner} triple systems},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020-2021},
     doi = {10.23638/DMTCS-22-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-1-5/}
}
TY  - JOUR
AU  - Amjadi, H.
AU  - Soltankhah, N.
TI  - The 3-way flower intersection problem for Steiner triple systems
JO  - Discrete mathematics & theoretical computer science
PY  - 2020-2021
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-1-5/
DO  - 10.23638/DMTCS-22-1-5
LA  - en
ID  - DMTCS_2020_22_1_a8
ER  - 
%0 Journal Article
%A Amjadi, H.
%A Soltankhah, N.
%T The 3-way flower intersection problem for Steiner triple systems
%J Discrete mathematics & theoretical computer science
%D 2020-2021
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-1-5/
%R 10.23638/DMTCS-22-1-5
%G en
%F DMTCS_2020_22_1_a8
Amjadi, H.; Soltankhah, N. The 3-way flower intersection problem for Steiner triple systems. Discrete mathematics & theoretical computer science, Tome 22 (2020-2021) no. 1. doi : 10.23638/DMTCS-22-1-5. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-1-5/

Cité par Sources :