On the Complexity of Digraph Colourings and Vertex Arboricity
Discrete mathematics & theoretical computer science, Tome 22 (2020-2021) no. 1.

Voir la notice de l'article provenant de la source Episciences

It has been shown by Bokal et al. that deciding 2-colourability of digraphs is an NP-complete problem. This result was later on extended by Feder et al. to prove that deciding whether a digraph has a circular $p$-colouring is NP-complete for all rational $p>1$. In this paper, we consider the complexity of corresponding decision problems for related notions of fractional colourings for digraphs and graphs, including the star dichromatic number, the fractional dichromatic number and the circular vertex arboricity. We prove the following results: Deciding if the star dichromatic number of a digraph is at most $p$ is NP-complete for every rational $p>1$. Deciding if the fractional dichromatic number of a digraph is at most $p$ is NP-complete for every $p>1, p \neq 2$. Deciding if the circular vertex arboricity of a graph is at most $p$ is NP-complete for every rational $p>1$. To show these results, different techniques are required in each case. In order to prove the first result, we relate the star dichromatic number to a new notion of homomorphisms between digraphs, called circular homomorphisms, which might be of independent interest. We provide a classification of the computational complexities of the corresponding homomorphism colouring problems similar to the one derived by Feder et al. for acyclic homomorphisms.
DOI : 10.23638/DMTCS-22-1-4
Classification : 05C15, 05C20, 68Q17
@article{DMTCS_2020_22_1_a2,
     author = {Hochst\"attler, Winfried and Schr\"oder, Felix and Steiner, Raphael},
     title = {On the {Complexity} of {Digraph} {Colourings} and {Vertex} {Arboricity}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2020-2021},
     doi = {10.23638/DMTCS-22-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-1-4/}
}
TY  - JOUR
AU  - Hochstättler, Winfried
AU  - Schröder, Felix
AU  - Steiner, Raphael
TI  - On the Complexity of Digraph Colourings and Vertex Arboricity
JO  - Discrete mathematics & theoretical computer science
PY  - 2020-2021
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-1-4/
DO  - 10.23638/DMTCS-22-1-4
LA  - en
ID  - DMTCS_2020_22_1_a2
ER  - 
%0 Journal Article
%A Hochstättler, Winfried
%A Schröder, Felix
%A Steiner, Raphael
%T On the Complexity of Digraph Colourings and Vertex Arboricity
%J Discrete mathematics & theoretical computer science
%D 2020-2021
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-1-4/
%R 10.23638/DMTCS-22-1-4
%G en
%F DMTCS_2020_22_1_a2
Hochstättler, Winfried; Schröder, Felix; Steiner, Raphael. On the Complexity of Digraph Colourings and Vertex Arboricity. Discrete mathematics & theoretical computer science, Tome 22 (2020-2021) no. 1. doi : 10.23638/DMTCS-22-1-4. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-22-1-4/

Cité par Sources :