Monochromatic loose paths in multicolored $k$-uniform cliques
Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 4.

Voir la notice de l'article provenant de la source Episciences

For integers $k\ge 2$ and $\ell\ge 0$, a $k$-uniform hypergraph is called a loose path of length $\ell$, and denoted by $P_\ell^{(k)}$, if it consists of $\ell $ edges $e_1,\dots,e_\ell$ such that $|e_i\cap e_j|=1$ if $|i-j|=1$ and $e_i\cap e_j=\emptyset$ if $|i-j|\ge2$. In other words, each pair of consecutive edges intersects on a single vertex, while all other pairs are disjoint. Let $R(P_\ell^{(k)};r)$ be the minimum integer $n$ such that every $r$-edge-coloring of the complete $k$-uniform hypergraph $K_n^{(k)}$ yields a monochromatic copy of $P_\ell^{(k)}$. In this paper we are mostly interested in constructive upper bounds on $R(P_\ell^{(k)};r)$, meaning that on the cost of possibly enlarging the order of the complete hypergraph, we would like to efficiently find a monochromatic copy of $P_\ell^{(k)}$ in every coloring. In particular, we show that there is a constant $c>0$ such that for all $k\ge 2$, $\ell\ge3$, $2\le r\le k-1$, and $n\ge k(\ell+1)r(1+\ln(r))$, there is an algorithm such that for every $r$-edge-coloring of the edges of $K_n^{(k)}$, it finds a monochromatic copy of $P_\ell^{(k)}$ in time at most $cn^k$. We also prove a non-constructive upper bound $R(P_\ell^{(k)};r)\le(k-1)\ell r$.
@article{DMTCS_2019_21_4_a12,
     author = {Dudek, Andrzej and Ruci\'nski, Andrzej},
     title = {Monochromatic loose paths in multicolored $k$-uniform cliques},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2019},
     doi = {10.23638/DMTCS-21-4-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-4-7/}
}
TY  - JOUR
AU  - Dudek, Andrzej
AU  - Ruciński, Andrzej
TI  - Monochromatic loose paths in multicolored $k$-uniform cliques
JO  - Discrete mathematics & theoretical computer science
PY  - 2019
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-4-7/
DO  - 10.23638/DMTCS-21-4-7
LA  - en
ID  - DMTCS_2019_21_4_a12
ER  - 
%0 Journal Article
%A Dudek, Andrzej
%A Ruciński, Andrzej
%T Monochromatic loose paths in multicolored $k$-uniform cliques
%J Discrete mathematics & theoretical computer science
%D 2019
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-4-7/
%R 10.23638/DMTCS-21-4-7
%G en
%F DMTCS_2019_21_4_a12
Dudek, Andrzej; Ruciński, Andrzej. Monochromatic loose paths in multicolored $k$-uniform cliques. Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 4. doi : 10.23638/DMTCS-21-4-7. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-4-7/

Cité par Sources :