A note on the convexity number for complementary prisms
Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 4
Voir la notice de l'article provenant de la source Episciences
In the geodetic convexity, a set of vertices $S$ of a graph $G$ is $\textit{convex}$ if all vertices belonging to any shortest path between two vertices of $S$ lie in $S$. The cardinality $con(G)$ of a maximum proper convex set $S$ of $G$ is the $\textit{convexity number}$ of $G$. The $\textit{complementary prism}$ $G\overline{G}$ of a graph $G$ arises from the disjoint union of the graph $G$ and $\overline{G}$ by adding the edges of a perfect matching between the corresponding vertices of $G$ and $\overline{G}$. In this work, we we prove that the decision problem related to the convexity number is NP-complete even restricted to complementary prisms, we determine $con(G\overline{G})$ when $G$ is disconnected or $G$ is a cograph, and we present a lower bound when $diam(G) \neq 3$.
@article{DMTCS_2019_21_4_a1,
author = {Castonguay, Diane and Coelho, Erika M. M. and Coelho, Hebert and Nascimento, Julliano R.},
title = {A note on the convexity number for complementary prisms},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {21},
number = {4},
year = {2019},
doi = {10.23638/DMTCS-21-4-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-4-4/}
}
TY - JOUR AU - Castonguay, Diane AU - Coelho, Erika M. M. AU - Coelho, Hebert AU - Nascimento, Julliano R. TI - A note on the convexity number for complementary prisms JO - Discrete mathematics & theoretical computer science PY - 2019 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-4-4/ DO - 10.23638/DMTCS-21-4-4 LA - en ID - DMTCS_2019_21_4_a1 ER -
%0 Journal Article %A Castonguay, Diane %A Coelho, Erika M. M. %A Coelho, Hebert %A Nascimento, Julliano R. %T A note on the convexity number for complementary prisms %J Discrete mathematics & theoretical computer science %D 2019 %V 21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-4-4/ %R 10.23638/DMTCS-21-4-4 %G en %F DMTCS_2019_21_4_a1
Castonguay, Diane; Coelho, Erika M. M.; Coelho, Hebert; Nascimento, Julliano R. A note on the convexity number for complementary prisms. Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 4. doi: 10.23638/DMTCS-21-4-4
Cité par Sources :