Proofs of Conjectures about Pattern-Avoiding Linear Extensions
Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 4.

Voir la notice de l'article provenant de la source Episciences

After fixing a canonical ordering (or labeling) of the elements of a finite poset, one can associate each linear extension of the poset with a permutation. Some recent papers consider specific families of posets and ask how many linear extensions give rise to permutations that avoid certain patterns. We build off of two of these papers. We first consider pattern avoidance in $k$-ary heaps, where we obtain a general result that proves a conjecture of Levin, Pudwell, Riehl, and Sandberg in a special case. We then prove some conjectures that Anderson, Egge, Riehl, Ryan, Steinke, and Vaughan made about pattern-avoiding linear extensions of rectangular posets.
@article{DMTCS_2019_21_4_a13,
     author = {Defant, Colin},
     title = {Proofs of {Conjectures} about {Pattern-Avoiding} {Linear} {Extensions}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2019},
     doi = {10.23638/DMTCS-21-4-16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-4-16/}
}
TY  - JOUR
AU  - Defant, Colin
TI  - Proofs of Conjectures about Pattern-Avoiding Linear Extensions
JO  - Discrete mathematics & theoretical computer science
PY  - 2019
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-4-16/
DO  - 10.23638/DMTCS-21-4-16
LA  - en
ID  - DMTCS_2019_21_4_a13
ER  - 
%0 Journal Article
%A Defant, Colin
%T Proofs of Conjectures about Pattern-Avoiding Linear Extensions
%J Discrete mathematics & theoretical computer science
%D 2019
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-4-16/
%R 10.23638/DMTCS-21-4-16
%G en
%F DMTCS_2019_21_4_a13
Defant, Colin. Proofs of Conjectures about Pattern-Avoiding Linear Extensions. Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 4. doi : 10.23638/DMTCS-21-4-16. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-4-16/

Cité par Sources :