On cordial labeling of hypertrees
Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 4.

Voir la notice de l'article provenant de la source Episciences

Let $f:V\rightarrow\mathbb{Z}_k$ be a vertex labeling of a hypergraph $H=(V,E)$. This labeling induces an~edge labeling of $H$ defined by $f(e)=\sum_{v\in e}f(v)$, where the sum is taken modulo $k$. We say that $f$ is $k$-cordial if for all $a, b \in \mathbb{Z}_k$ the number of vertices with label $a$ differs by at most $1$ from the number of vertices with label $b$ and the analogous condition holds also for labels of edges. If $H$ admits a $k$-cordial labeling then $H$ is called $k$-cordial. The existence of $k$-cordial labelings has been investigated for graphs for decades. Hovey~(1991) conjectured that every tree $T$ is $k$-cordial for every $k\ge 2$. Cichacz, G\"orlich and Tuza~(2013) were first to investigate the analogous problem for hypertrees, that is, connected hypergraphs without cycles. The main results of their work are that every $k$-uniform hypertree is $k$-cordial for every $k\ge 2$ and that every hypertree with $n$ or $m$ odd is $2$-cordial. Moreover, they conjectured that in fact all hypertrees are $2$-cordial. In this article, we confirm the conjecture of Cichacz et al. and make a step further by proving that for $k\in\{2,3\}$ every hypertree is $k$-cordial.
@article{DMTCS_2019_21_4_a5,
     author = {Tuczy\'nski, Micha{\l} and Wenus, Przemys{\l}aw and W\k{e}sek, Krzysztof},
     title = {On cordial labeling of hypertrees},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2019},
     doi = {10.23638/DMTCS-21-4-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-4-1/}
}
TY  - JOUR
AU  - Tuczyński, Michał
AU  - Wenus, Przemysław
AU  - Węsek, Krzysztof
TI  - On cordial labeling of hypertrees
JO  - Discrete mathematics & theoretical computer science
PY  - 2019
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-4-1/
DO  - 10.23638/DMTCS-21-4-1
LA  - en
ID  - DMTCS_2019_21_4_a5
ER  - 
%0 Journal Article
%A Tuczyński, Michał
%A Wenus, Przemysław
%A Węsek, Krzysztof
%T On cordial labeling of hypertrees
%J Discrete mathematics & theoretical computer science
%D 2019
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-4-1/
%R 10.23638/DMTCS-21-4-1
%G en
%F DMTCS_2019_21_4_a5
Tuczyński, Michał; Wenus, Przemysław; Węsek, Krzysztof. On cordial labeling of hypertrees. Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 4. doi : 10.23638/DMTCS-21-4-1. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-4-1/

Cité par Sources :