Packing chromatic vertex-critical graphs
Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 3
Voir la notice de l'article provenant de la source Episciences
The packing chromatic number $\chi_{\rho}(G)$ of a graph $G$ is the smallest integer $k$ such that the vertex set of $G$ can be partitioned into sets $V_i$, $i\in [k]$, where vertices in $V_i$ are pairwise at distance at least $i+1$. Packing chromatic vertex-critical graphs, $\chi_{\rho}$-critical for short, are introduced as the graphs $G$ for which $\chi_{\rho}(G-x) < \chi_{\rho}(G)$ holds for every vertex $x$ of $G$. If $\chi_{\rho}(G) = k$, then $G$ is $k$-$\chi_{\rho}$-critical. It is shown that if $G$ is $\chi_{\rho}$-critical, then the set $\{\chi_{\rho}(G) - \chi_{\rho}(G-x):\ x\in V(G)\}$ can be almost arbitrary. The $3$-$\chi_{\rho}$-critical graphs are characterized, and $4$-$\chi_{\rho}$-critical graphs are characterized in the case when they contain a cycle of length at least $5$ which is not congruent to $0$ modulo $4$. It is shown that for every integer $k\ge 2$ there exists a $k$-$\chi_{\rho}$-critical tree and that a $k$-$\chi_{\rho}$-critical caterpillar exists if and only if $k\le 7$. Cartesian products are also considered and in particular it is proved that if $G$ and $H$ are vertex-transitive graphs and ${\rm diam(G)} + {\rm diam}(H) \le \chi_{\rho}(G)$, then $G\,\square\, H$ is $\chi_{\rho}$-critical.
@article{DMTCS_2019_21_3_a7,
author = {Klav\v{z}ar, Sandi and Rall, Douglas F.},
title = {Packing chromatic vertex-critical graphs},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {21},
number = {3},
year = {2019},
doi = {10.23638/DMTCS-21-3-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-8/}
}
TY - JOUR AU - Klavžar, Sandi AU - Rall, Douglas F. TI - Packing chromatic vertex-critical graphs JO - Discrete mathematics & theoretical computer science PY - 2019 VL - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-8/ DO - 10.23638/DMTCS-21-3-8 LA - en ID - DMTCS_2019_21_3_a7 ER -
%0 Journal Article %A Klavžar, Sandi %A Rall, Douglas F. %T Packing chromatic vertex-critical graphs %J Discrete mathematics & theoretical computer science %D 2019 %V 21 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-8/ %R 10.23638/DMTCS-21-3-8 %G en %F DMTCS_2019_21_3_a7
Klavžar, Sandi; Rall, Douglas F. Packing chromatic vertex-critical graphs. Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 3. doi: 10.23638/DMTCS-21-3-8
Cité par Sources :