Some results on the palette index of graphs
Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 3.

Voir la notice de l'article provenant de la source Episciences

Given a proper edge coloring $\varphi$ of a graph $G$, we define the palette $S_{G}(v,\varphi)$ of a vertex $v \in V(G)$ as the set of all colors appearing on edges incident with $v$. The palette index $\check s(G)$ of $G$ is the minimum number of distinct palettes occurring in a proper edge coloring of $G$. In this paper we give various upper and lower bounds on the palette index of $G$ in terms of the vertex degrees of $G$, particularly for the case when $G$ is a bipartite graph with small vertex degrees. Some of our results concern $(a,b)$-biregular graphs; that is, bipartite graphs where all vertices in one part have degree $a$ and all vertices in the other part have degree $b$. We conjecture that if $G$ is $(a,b)$-biregular, then $\check{s}(G)\leq 1+\max\{a,b\}$, and we prove that this conjecture holds for several families of $(a,b)$-biregular graphs. Additionally, we characterize the graphs whose palette index equals the number of vertices.
@article{DMTCS_2019_21_3_a10,
     author = {Casselgren, C. J. and Petrosyan, Petros A.},
     title = {Some results on the palette index of graphs},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2019},
     doi = {10.23638/DMTCS-21-3-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-11/}
}
TY  - JOUR
AU  - Casselgren, C. J.
AU  - Petrosyan, Petros A.
TI  - Some results on the palette index of graphs
JO  - Discrete mathematics & theoretical computer science
PY  - 2019
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-11/
DO  - 10.23638/DMTCS-21-3-11
LA  - en
ID  - DMTCS_2019_21_3_a10
ER  - 
%0 Journal Article
%A Casselgren, C. J.
%A Petrosyan, Petros A.
%T Some results on the palette index of graphs
%J Discrete mathematics & theoretical computer science
%D 2019
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-11/
%R 10.23638/DMTCS-21-3-11
%G en
%F DMTCS_2019_21_3_a10
Casselgren, C. J.; Petrosyan, Petros A. Some results on the palette index of graphs. Discrete mathematics & theoretical computer science, Tome 21 (2019) no. 3. doi : 10.23638/DMTCS-21-3-11. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-3-11/

Cité par Sources :