Cyclic permutations avoiding pairs of patterns of length three
Discrete mathematics & theoretical computer science, Permutation Patters 2018, Tome 21 (2019) no. 2.

Voir la notice de l'article provenant de la source Episciences

We complete the enumeration of cyclic permutations avoiding two patterns of length three each by providing explicit formulas for all but one of the pairs for which no such formulas were known. The pair $(123,231)$ proves to be the most difficult of these pairs. We also prove a lower bound for the growth rate of the number of cyclic permutations that avoid a single pattern $q$, where $q$ is an element of a certain infinite family of patterns.
DOI : 10.23638/DMTCS-21-2-8
Classification : 05A05
@article{DMTCS_2019_21_2_a7,
     author = {Bona, Miklos and Cory, Michael},
     title = {Cyclic permutations avoiding pairs of patterns of length three},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2019},
     doi = {10.23638/DMTCS-21-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-8/}
}
TY  - JOUR
AU  - Bona, Miklos
AU  - Cory, Michael
TI  - Cyclic permutations avoiding pairs of patterns of length three
JO  - Discrete mathematics & theoretical computer science
PY  - 2019
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-8/
DO  - 10.23638/DMTCS-21-2-8
LA  - en
ID  - DMTCS_2019_21_2_a7
ER  - 
%0 Journal Article
%A Bona, Miklos
%A Cory, Michael
%T Cyclic permutations avoiding pairs of patterns of length three
%J Discrete mathematics & theoretical computer science
%D 2019
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-8/
%R 10.23638/DMTCS-21-2-8
%G en
%F DMTCS_2019_21_2_a7
Bona, Miklos; Cory, Michael. Cyclic permutations avoiding pairs of patterns of length three. Discrete mathematics & theoretical computer science, Permutation Patters 2018, Tome 21 (2019) no. 2. doi : 10.23638/DMTCS-21-2-8. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-8/

Cité par Sources :