Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$
Discrete mathematics & theoretical computer science, Permutation Patters 2018, Tome 21 (2019) no. 2
Voir la notice de l'article provenant de la source Episciences
Classical pattern avoidance and occurrence are well studied in the symmetric group $\mathcal{S}_{n}$. In this paper, we provide explicit recurrence relations to the generating functions counting the number of classical pattern occurrence in the set of 132-avoiding permutations and the set of 123-avoiding permutations.
@article{DMTCS_2019_21_2_a2,
author = {Qiu, Dun and Remmel, Jeffrey},
title = {Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2019},
doi = {10.23638/DMTCS-21-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-4/}
}
TY - JOUR
AU - Qiu, Dun
AU - Remmel, Jeffrey
TI - Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$
JO - Discrete mathematics & theoretical computer science
PY - 2019
VL - 21
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-4/
DO - 10.23638/DMTCS-21-2-4
LA - en
ID - DMTCS_2019_21_2_a2
ER -
%0 Journal Article
%A Qiu, Dun
%A Remmel, Jeffrey
%T Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$
%J Discrete mathematics & theoretical computer science
%D 2019
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-4/
%R 10.23638/DMTCS-21-2-4
%G en
%F DMTCS_2019_21_2_a2
Qiu, Dun; Remmel, Jeffrey. Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$. Discrete mathematics & theoretical computer science, Permutation Patters 2018, Tome 21 (2019) no. 2. doi: 10.23638/DMTCS-21-2-4
Cité par Sources :