Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$
Discrete mathematics & theoretical computer science, Permutation Patters 2018, Tome 21 (2019) no. 2

Voir la notice de l'article provenant de la source Episciences

Classical pattern avoidance and occurrence are well studied in the symmetric group $\mathcal{S}_{n}$. In this paper, we provide explicit recurrence relations to the generating functions counting the number of classical pattern occurrence in the set of 132-avoiding permutations and the set of 123-avoiding permutations.
@article{DMTCS_2019_21_2_a2,
     author = {Qiu, Dun and Remmel, Jeffrey},
     title = {Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2019},
     doi = {10.23638/DMTCS-21-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-4/}
}
TY  - JOUR
AU  - Qiu, Dun
AU  - Remmel, Jeffrey
TI  - Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$
JO  - Discrete mathematics & theoretical computer science
PY  - 2019
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-4/
DO  - 10.23638/DMTCS-21-2-4
LA  - en
ID  - DMTCS_2019_21_2_a2
ER  - 
%0 Journal Article
%A Qiu, Dun
%A Remmel, Jeffrey
%T Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$
%J Discrete mathematics & theoretical computer science
%D 2019
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-4/
%R 10.23638/DMTCS-21-2-4
%G en
%F DMTCS_2019_21_2_a2
Qiu, Dun; Remmel, Jeffrey. Classical pattern distributions in $\mathcal{S}_{n}(132)$ and $\mathcal{S}_{n}(123)$. Discrete mathematics & theoretical computer science, Permutation Patters 2018, Tome 21 (2019) no. 2. doi: 10.23638/DMTCS-21-2-4

Cité par Sources :