Expected size of a tree in the fixed point forest
Discrete mathematics & theoretical computer science, Permutation Patters 2018, Tome 21 (2019) no. 2
Voir la notice de l'article provenant de la source Episciences
We study the local limit of the fixed-point forest, a tree structure associated to a simple sorting algorithm on permutations. This local limit can be viewed as an infinite random tree that can be constructed from a Poisson point process configuration on $[0,1]^\mathbb{N}$. We generalize this random tree, and compute the expected size and expected number of leaves of a random rooted subtree in the generalized version. We also obtain bounds on the variance of the size.
@article{DMTCS_2019_21_2_a0,
author = {Regan, Samuel and Slivken, Erik},
title = {Expected size of a tree in the fixed point forest},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2019},
doi = {10.23638/DMTCS-21-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-1/}
}
TY - JOUR AU - Regan, Samuel AU - Slivken, Erik TI - Expected size of a tree in the fixed point forest JO - Discrete mathematics & theoretical computer science PY - 2019 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-1/ DO - 10.23638/DMTCS-21-2-1 LA - en ID - DMTCS_2019_21_2_a0 ER -
%0 Journal Article %A Regan, Samuel %A Slivken, Erik %T Expected size of a tree in the fixed point forest %J Discrete mathematics & theoretical computer science %D 2019 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-2-1/ %R 10.23638/DMTCS-21-2-1 %G en %F DMTCS_2019_21_2_a0
Regan, Samuel; Slivken, Erik. Expected size of a tree in the fixed point forest. Discrete mathematics & theoretical computer science, Permutation Patters 2018, Tome 21 (2019) no. 2. doi: 10.23638/DMTCS-21-2-1
Cité par Sources :