On Weakly Distinguishing Graph Polynomials
Discrete mathematics & theoretical computer science, ICGT 2018, Tome 21 (2019) no. 1
Voir la notice de l'article provenant de la source Episciences
A univariate graph polynomial P(G;X) is weakly distinguishing if for almost all finite graphs G there is a finite graph H with P(G;X)=P(H;X). We show that the clique polynomial and the independence polynomial are weakly distinguishing. Furthermore, we show that generating functions of induced subgraphs with property C are weakly distinguishing provided that C is of bounded degeneracy or tree-width. The same holds for the harmonious chromatic polynomial.
@article{DMTCS_2019_21_1_a1,
author = {Makowsky, Johann A. and Rakita, Vsevolod},
title = {On {Weakly} {Distinguishing} {Graph} {Polynomials}},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2019},
doi = {10.23638/DMTCS-21-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-4/}
}
TY - JOUR AU - Makowsky, Johann A. AU - Rakita, Vsevolod TI - On Weakly Distinguishing Graph Polynomials JO - Discrete mathematics & theoretical computer science PY - 2019 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-4/ DO - 10.23638/DMTCS-21-1-4 LA - en ID - DMTCS_2019_21_1_a1 ER -
%0 Journal Article %A Makowsky, Johann A. %A Rakita, Vsevolod %T On Weakly Distinguishing Graph Polynomials %J Discrete mathematics & theoretical computer science %D 2019 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-4/ %R 10.23638/DMTCS-21-1-4 %G en %F DMTCS_2019_21_1_a1
Makowsky, Johann A.; Rakita, Vsevolod. On Weakly Distinguishing Graph Polynomials. Discrete mathematics & theoretical computer science, ICGT 2018, Tome 21 (2019) no. 1. doi: 10.23638/DMTCS-21-1-4
Cité par Sources :