On Weakly Distinguishing Graph Polynomials
Discrete mathematics & theoretical computer science, ICGT 2018, Tome 21 (2019) no. 1.

Voir la notice de l'article provenant de la source Episciences

A univariate graph polynomial P(G;X) is weakly distinguishing if for almost all finite graphs G there is a finite graph H with P(G;X)=P(H;X). We show that the clique polynomial and the independence polynomial are weakly distinguishing. Furthermore, we show that generating functions of induced subgraphs with property C are weakly distinguishing provided that C is of bounded degeneracy or tree-width. The same holds for the harmonious chromatic polynomial.
@article{DMTCS_2019_21_1_a1,
     author = {Makowsky, Johann A. and Rakita, Vsevolod},
     title = {On {Weakly} {Distinguishing} {Graph} {Polynomials}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2019},
     doi = {10.23638/DMTCS-21-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-4/}
}
TY  - JOUR
AU  - Makowsky, Johann A.
AU  - Rakita, Vsevolod
TI  - On Weakly Distinguishing Graph Polynomials
JO  - Discrete mathematics & theoretical computer science
PY  - 2019
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-4/
DO  - 10.23638/DMTCS-21-1-4
LA  - en
ID  - DMTCS_2019_21_1_a1
ER  - 
%0 Journal Article
%A Makowsky, Johann A.
%A Rakita, Vsevolod
%T On Weakly Distinguishing Graph Polynomials
%J Discrete mathematics & theoretical computer science
%D 2019
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-4/
%R 10.23638/DMTCS-21-1-4
%G en
%F DMTCS_2019_21_1_a1
Makowsky, Johann A.; Rakita, Vsevolod. On Weakly Distinguishing Graph Polynomials. Discrete mathematics & theoretical computer science, ICGT 2018, Tome 21 (2019) no. 1. doi : 10.23638/DMTCS-21-1-4. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-4/

Cité par Sources :