Clustered Spanning Tree - Conditions for Feasibility
Discrete mathematics & theoretical computer science, ICGT 2018, Tome 21 (2019) no. 1
Voir la notice de l'article provenant de la source Episciences
Let H =< V, S > be a hypergraph, where V is a set of vertices and S is a set of not necessarily disjoint clusters Si ⊆ V. The Clustered Spanning Tree problem is to find a spanning tree of G which satisfies that each cluster induces a subtree, when it exists. We provide an efficient and unique algorithm which finds a feasible solution tree for H when it exists, or states that no feasible solution exists. The paper also uses special structures of the intersection graph of H to construct a feasible solution more efficiently. For cases when the hypergraph does not have a feasible solution tree, we consider adding vertices to exactly one cluster in order to gain feasibility. We characterize when such addition can gain feasibility, find the appropriate cluster and a possible set of vertices to be added.
@article{DMTCS_2019_21_1_a14,
author = {Guttmann-Beck, Nili and Sorek, Zeev and Stern, Michal},
title = {Clustered {Spanning} {Tree} - {Conditions} for {Feasibility}},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {2019},
doi = {10.23638/DMTCS-21-1-15},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-15/}
}
TY - JOUR AU - Guttmann-Beck, Nili AU - Sorek, Zeev AU - Stern, Michal TI - Clustered Spanning Tree - Conditions for Feasibility JO - Discrete mathematics & theoretical computer science PY - 2019 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-15/ DO - 10.23638/DMTCS-21-1-15 LA - en ID - DMTCS_2019_21_1_a14 ER -
%0 Journal Article %A Guttmann-Beck, Nili %A Sorek, Zeev %A Stern, Michal %T Clustered Spanning Tree - Conditions for Feasibility %J Discrete mathematics & theoretical computer science %D 2019 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-15/ %R 10.23638/DMTCS-21-1-15 %G en %F DMTCS_2019_21_1_a14
Guttmann-Beck, Nili; Sorek, Zeev; Stern, Michal. Clustered Spanning Tree - Conditions for Feasibility. Discrete mathematics & theoretical computer science, ICGT 2018, Tome 21 (2019) no. 1. doi: 10.23638/DMTCS-21-1-15
Cité par Sources :