Clustered Spanning Tree - Conditions for Feasibility
Discrete mathematics & theoretical computer science, ICGT 2018, Tome 21 (2019) no. 1.

Voir la notice de l'article provenant de la source Episciences

Let H =< V, S > be a hypergraph, where V is a set of vertices and S is a set of not necessarily disjoint clusters Si ⊆ V. The Clustered Spanning Tree problem is to find a spanning tree of G which satisfies that each cluster induces a subtree, when it exists. We provide an efficient and unique algorithm which finds a feasible solution tree for H when it exists, or states that no feasible solution exists. The paper also uses special structures of the intersection graph of H to construct a feasible solution more efficiently. For cases when the hypergraph does not have a feasible solution tree, we consider adding vertices to exactly one cluster in order to gain feasibility. We characterize when such addition can gain feasibility, find the appropriate cluster and a possible set of vertices to be added.
@article{DMTCS_2019_21_1_a14,
     author = {Guttmann-Beck, Nili and Sorek, Zeev and Stern, Michal},
     title = {Clustered {Spanning} {Tree} - {Conditions} for {Feasibility}},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2019},
     doi = {10.23638/DMTCS-21-1-15},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-15/}
}
TY  - JOUR
AU  - Guttmann-Beck, Nili
AU  - Sorek, Zeev
AU  - Stern, Michal
TI  - Clustered Spanning Tree - Conditions for Feasibility
JO  - Discrete mathematics & theoretical computer science
PY  - 2019
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-15/
DO  - 10.23638/DMTCS-21-1-15
LA  - en
ID  - DMTCS_2019_21_1_a14
ER  - 
%0 Journal Article
%A Guttmann-Beck, Nili
%A Sorek, Zeev
%A Stern, Michal
%T Clustered Spanning Tree - Conditions for Feasibility
%J Discrete mathematics & theoretical computer science
%D 2019
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-15/
%R 10.23638/DMTCS-21-1-15
%G en
%F DMTCS_2019_21_1_a14
Guttmann-Beck, Nili; Sorek, Zeev; Stern, Michal. Clustered Spanning Tree - Conditions for Feasibility. Discrete mathematics & theoretical computer science, ICGT 2018, Tome 21 (2019) no. 1. doi : 10.23638/DMTCS-21-1-15. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-15/

Cité par Sources :