The maximum number of $P_\ell$ copies in $P_k$-free graphs
Discrete mathematics & theoretical computer science, ICGT 2018, Tome 21 (2019) no. 1
Cet article a éte moissonné depuis la source Episciences
Generalizing Tur\'an's classical extremal problem, Alon and Shikhelman investigated the problem of maximizing the number of $T$ copies in an $H$-free graph, for a pair of graphs $T$ and $H$. Whereas Alon and Shikhelman were primarily interested in determining the order of magnitude for large classes of graphs $H$, we focus on the case when $T$ and $H$ are paths, where we find asymptotic and in some cases exact results. We also consider other structures like stars and the set of cycles of length at least $k$, where we derive asymptotically sharp estimates. Our results generalize well-known extremal theorems of Erd\H{o}s and Gallai.
@article{DMTCS_2019_21_1_a13,
author = {Gy\H{o}ri, Ervin and Salia, Nika and Tompkins, Casey and Zamora, Oscar},
title = {The maximum number of $P_\ell$ copies in $P_k$-free graphs},
journal = {Discrete mathematics & theoretical computer science},
year = {2019},
volume = {21},
number = {1},
doi = {10.23638/DMTCS-21-1-14},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-14/}
}
TY - JOUR AU - Győri, Ervin AU - Salia, Nika AU - Tompkins, Casey AU - Zamora, Oscar TI - The maximum number of $P_\ell$ copies in $P_k$-free graphs JO - Discrete mathematics & theoretical computer science PY - 2019 VL - 21 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-14/ DO - 10.23638/DMTCS-21-1-14 LA - en ID - DMTCS_2019_21_1_a13 ER -
%0 Journal Article %A Győri, Ervin %A Salia, Nika %A Tompkins, Casey %A Zamora, Oscar %T The maximum number of $P_\ell$ copies in $P_k$-free graphs %J Discrete mathematics & theoretical computer science %D 2019 %V 21 %N 1 %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-14/ %R 10.23638/DMTCS-21-1-14 %G en %F DMTCS_2019_21_1_a13
Győri, Ervin; Salia, Nika; Tompkins, Casey; Zamora, Oscar. The maximum number of $P_\ell$ copies in $P_k$-free graphs. Discrete mathematics & theoretical computer science, ICGT 2018, Tome 21 (2019) no. 1. doi: 10.23638/DMTCS-21-1-14
Cité par Sources :