Voir la notice de l'article provenant de la source Episciences
@article{DMTCS_2019_21_1_a13, author = {Gy\H{o}ri, Ervin and Salia, Nika and Tompkins, Casey and Zamora, Oscar}, title = {The maximum number of $P_\ell$ copies in $P_k$-free graphs}, journal = {Discrete mathematics & theoretical computer science}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2019}, doi = {10.23638/DMTCS-21-1-14}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-14/} }
TY - JOUR AU - Győri, Ervin AU - Salia, Nika AU - Tompkins, Casey AU - Zamora, Oscar TI - The maximum number of $P_\ell$ copies in $P_k$-free graphs JO - Discrete mathematics & theoretical computer science PY - 2019 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-14/ DO - 10.23638/DMTCS-21-1-14 LA - en ID - DMTCS_2019_21_1_a13 ER -
%0 Journal Article %A Győri, Ervin %A Salia, Nika %A Tompkins, Casey %A Zamora, Oscar %T The maximum number of $P_\ell$ copies in $P_k$-free graphs %J Discrete mathematics & theoretical computer science %D 2019 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-14/ %R 10.23638/DMTCS-21-1-14 %G en %F DMTCS_2019_21_1_a13
Győri, Ervin; Salia, Nika; Tompkins, Casey; Zamora, Oscar. The maximum number of $P_\ell$ copies in $P_k$-free graphs. Discrete mathematics & theoretical computer science, ICGT 2018, Tome 21 (2019) no. 1. doi : 10.23638/DMTCS-21-1-14. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-21-1-14/
Cité par Sources :