Fast strategies in biased Maker--Breaker games
Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 2
Cet article a éte moissonné depuis la source Episciences
We study the biased $(1:b)$ Maker--Breaker positional games, played on the edge set of the complete graph on $n$ vertices, $K_n$. Given Breaker's bias $b$, possibly depending on $n$, we determine the bounds for the minimal number of moves, depending on $b$, in which Maker can win in each of the two standard graph games, the Perfect Matching game and the Hamilton Cycle game.
@article{DMTCS_2018_20_2_a6,
author = {Mikala\v{c}ki, Mirjana and Stojakovi\'c, Milo\v{s}},
title = {Fast strategies in biased {Maker--Breaker} games},
journal = {Discrete mathematics & theoretical computer science},
year = {2018},
volume = {20},
number = {2},
doi = {10.23638/DMTCS-20-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-6/}
}
TY - JOUR AU - Mikalački, Mirjana AU - Stojaković, Miloš TI - Fast strategies in biased Maker--Breaker games JO - Discrete mathematics & theoretical computer science PY - 2018 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-6/ DO - 10.23638/DMTCS-20-2-6 LA - en ID - DMTCS_2018_20_2_a6 ER -
%0 Journal Article %A Mikalački, Mirjana %A Stojaković, Miloš %T Fast strategies in biased Maker--Breaker games %J Discrete mathematics & theoretical computer science %D 2018 %V 20 %N 2 %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-6/ %R 10.23638/DMTCS-20-2-6 %G en %F DMTCS_2018_20_2_a6
Mikalački, Mirjana; Stojaković, Miloš. Fast strategies in biased Maker--Breaker games. Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 2. doi: 10.23638/DMTCS-20-2-6
Cité par Sources :