Fast strategies in biased Maker--Breaker games
Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 2.

Voir la notice de l'article provenant de la source Episciences

We study the biased $(1:b)$ Maker--Breaker positional games, played on the edge set of the complete graph on $n$ vertices, $K_n$. Given Breaker's bias $b$, possibly depending on $n$, we determine the bounds for the minimal number of moves, depending on $b$, in which Maker can win in each of the two standard graph games, the Perfect Matching game and the Hamilton Cycle game.
@article{DMTCS_2018_20_2_a6,
     author = {Mikala\v{c}ki, Mirjana and Stojakovi\'c, Milo\v{s}},
     title = {Fast strategies in biased {Maker--Breaker} games},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     doi = {10.23638/DMTCS-20-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-6/}
}
TY  - JOUR
AU  - Mikalački, Mirjana
AU  - Stojaković, Miloš
TI  - Fast strategies in biased Maker--Breaker games
JO  - Discrete mathematics & theoretical computer science
PY  - 2018
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-6/
DO  - 10.23638/DMTCS-20-2-6
LA  - en
ID  - DMTCS_2018_20_2_a6
ER  - 
%0 Journal Article
%A Mikalački, Mirjana
%A Stojaković, Miloš
%T Fast strategies in biased Maker--Breaker games
%J Discrete mathematics & theoretical computer science
%D 2018
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-6/
%R 10.23638/DMTCS-20-2-6
%G en
%F DMTCS_2018_20_2_a6
Mikalački, Mirjana; Stojaković, Miloš. Fast strategies in biased Maker--Breaker games. Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 2. doi : 10.23638/DMTCS-20-2-6. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-6/

Cité par Sources :