Semitotal domination in trees
Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 2.

Voir la notice de l'article provenant de la source Episciences

In this paper, we study a parameter that is squeezed between arguably the two important domination parameters, namely the domination number, $\gamma(G)$, and the total domination number, $\gamma_t(G)$. A set $S$ of vertices in $G$ is a semitotal dominating set of $G$ if it is a dominating set of $G$ and every vertex in S is within distance $2$ of another vertex of $S$. The semitotal domination number, $\gamma_{t2}(G)$, is the minimum cardinality of a semitotal dominating set of $G$. We observe that $\gamma(G)\leq \gamma_{t2}(G)\leq \gamma_t(G)$. In this paper, we give a lower bound for the semitotal domination number of trees and we characterize the extremal trees. In addition, we characterize trees with equal domination and semitotal domination numbers.
@article{DMTCS_2018_20_2_a3,
     author = {Wei, Zhuang and Guoliang, Hao},
     title = {Semitotal domination in trees},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     doi = {10.23638/DMTCS-20-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-5/}
}
TY  - JOUR
AU  - Wei, Zhuang
AU  - Guoliang, Hao
TI  - Semitotal domination in trees
JO  - Discrete mathematics & theoretical computer science
PY  - 2018
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-5/
DO  - 10.23638/DMTCS-20-2-5
LA  - en
ID  - DMTCS_2018_20_2_a3
ER  - 
%0 Journal Article
%A Wei, Zhuang
%A Guoliang, Hao
%T Semitotal domination in trees
%J Discrete mathematics & theoretical computer science
%D 2018
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-5/
%R 10.23638/DMTCS-20-2-5
%G en
%F DMTCS_2018_20_2_a3
Wei, Zhuang; Guoliang, Hao. Semitotal domination in trees. Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 2. doi : 10.23638/DMTCS-20-2-5. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-5/

Cité par Sources :