The 26 Wilf-equivalence classes of length five quasi-consecutive patterns
Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 2.

Voir la notice de l'article provenant de la source Episciences

We present two families of Wilf-equivalences for consecutive and quasi-consecutive vincular patterns. These give new proofs of the classification of consecutive patterns of length $4$ and $5$. We then prove additional equivalences to explicitly classify all quasi-consecutive patterns of length $5$ into 26 Wilf-equivalence classes.
@article{DMTCS_2018_20_2_a9,
     author = {Chen, Evan and Narayanan, Shyam},
     title = {The 26 {Wilf-equivalence} classes of length five quasi-consecutive patterns},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2018},
     doi = {10.23638/DMTCS-20-2-12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-12/}
}
TY  - JOUR
AU  - Chen, Evan
AU  - Narayanan, Shyam
TI  - The 26 Wilf-equivalence classes of length five quasi-consecutive patterns
JO  - Discrete mathematics & theoretical computer science
PY  - 2018
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-12/
DO  - 10.23638/DMTCS-20-2-12
LA  - en
ID  - DMTCS_2018_20_2_a9
ER  - 
%0 Journal Article
%A Chen, Evan
%A Narayanan, Shyam
%T The 26 Wilf-equivalence classes of length five quasi-consecutive patterns
%J Discrete mathematics & theoretical computer science
%D 2018
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-12/
%R 10.23638/DMTCS-20-2-12
%G en
%F DMTCS_2018_20_2_a9
Chen, Evan; Narayanan, Shyam. The 26 Wilf-equivalence classes of length five quasi-consecutive patterns. Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 2. doi : 10.23638/DMTCS-20-2-12. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-12/

Cité par Sources :