The 26 Wilf-equivalence classes of length five quasi-consecutive patterns
Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 2
Cet article a éte moissonné depuis la source Episciences
We present two families of Wilf-equivalences for consecutive and quasi-consecutive vincular patterns. These give new proofs of the classification of consecutive patterns of length $4$ and $5$. We then prove additional equivalences to explicitly classify all quasi-consecutive patterns of length $5$ into 26 Wilf-equivalence classes.
@article{DMTCS_2018_20_2_a9,
author = {Chen, Evan and Narayanan, Shyam},
title = {The 26 {Wilf-equivalence} classes of length five quasi-consecutive patterns},
journal = {Discrete mathematics & theoretical computer science},
year = {2018},
volume = {20},
number = {2},
doi = {10.23638/DMTCS-20-2-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-12/}
}
TY - JOUR AU - Chen, Evan AU - Narayanan, Shyam TI - The 26 Wilf-equivalence classes of length five quasi-consecutive patterns JO - Discrete mathematics & theoretical computer science PY - 2018 VL - 20 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-12/ DO - 10.23638/DMTCS-20-2-12 LA - en ID - DMTCS_2018_20_2_a9 ER -
%0 Journal Article %A Chen, Evan %A Narayanan, Shyam %T The 26 Wilf-equivalence classes of length five quasi-consecutive patterns %J Discrete mathematics & theoretical computer science %D 2018 %V 20 %N 2 %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-2-12/ %R 10.23638/DMTCS-20-2-12 %G en %F DMTCS_2018_20_2_a9
Chen, Evan; Narayanan, Shyam. The 26 Wilf-equivalence classes of length five quasi-consecutive patterns. Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 2. doi: 10.23638/DMTCS-20-2-12
Cité par Sources :