A Study of $k$-dipath Colourings of Oriented Graphs
Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 1
Voir la notice de l'article provenant de la source Episciences
We examine $t$-colourings of oriented graphs in which, for a fixed integer $k \geq 1$, vertices joined by a directed path of length at most $k$ must be assigned different colours. A homomorphism model that extends the ideas of Sherk for the case $k=2$ is described. Dichotomy theorems for the complexity of the problem of deciding, for fixed $k$ and $t$, whether there exists such a $t$-colouring are proved.
@article{DMTCS_2018_20_1_a6,
author = {Duffy, Christopher and MacGillivray, Gary and Sopena, \'Eric},
title = {A {Study} of $k$-dipath {Colourings} of {Oriented} {Graphs}},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2018},
doi = {10.23638/DMTCS-20-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-1-6/}
}
TY - JOUR AU - Duffy, Christopher AU - MacGillivray, Gary AU - Sopena, Éric TI - A Study of $k$-dipath Colourings of Oriented Graphs JO - Discrete mathematics & theoretical computer science PY - 2018 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-1-6/ DO - 10.23638/DMTCS-20-1-6 LA - en ID - DMTCS_2018_20_1_a6 ER -
%0 Journal Article %A Duffy, Christopher %A MacGillivray, Gary %A Sopena, Éric %T A Study of $k$-dipath Colourings of Oriented Graphs %J Discrete mathematics & theoretical computer science %D 2018 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-1-6/ %R 10.23638/DMTCS-20-1-6 %G en %F DMTCS_2018_20_1_a6
Duffy, Christopher; MacGillivray, Gary; Sopena, Éric. A Study of $k$-dipath Colourings of Oriented Graphs. Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 1. doi: 10.23638/DMTCS-20-1-6
Cité par Sources :