Forbidden subgraphs for constant domination number
Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 1.

Voir la notice de l'article provenant de la source Episciences

In this paper, we characterize the sets $\mathcal{H}$ of connected graphs such that there exists a constant $c=c(\mathcal{H})$ satisfying $\gamma (G)\leq c$ for every connected $\mathcal{H}$-free graph $G$, where $\gamma (G)$ is the domination number of $G$.
@article{DMTCS_2018_20_1_a18,
     author = {Furuya, Michitaka},
     title = {Forbidden subgraphs for constant domination number},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2018},
     doi = {10.23638/DMTCS-20-1-19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-1-19/}
}
TY  - JOUR
AU  - Furuya, Michitaka
TI  - Forbidden subgraphs for constant domination number
JO  - Discrete mathematics & theoretical computer science
PY  - 2018
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-1-19/
DO  - 10.23638/DMTCS-20-1-19
LA  - en
ID  - DMTCS_2018_20_1_a18
ER  - 
%0 Journal Article
%A Furuya, Michitaka
%T Forbidden subgraphs for constant domination number
%J Discrete mathematics & theoretical computer science
%D 2018
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-1-19/
%R 10.23638/DMTCS-20-1-19
%G en
%F DMTCS_2018_20_1_a18
Furuya, Michitaka. Forbidden subgraphs for constant domination number. Discrete mathematics & theoretical computer science, Tome 20 (2018) no. 1. doi : 10.23638/DMTCS-20-1-19. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-20-1-19/

Cité par Sources :