Longest Gapped Repeats and Palindromes
Discrete mathematics & theoretical computer science, FCT '15, Tome 19 (2017-2018) no. 4
Voir la notice de l'article provenant de la source Episciences
A gapped repeat (respectively, palindrome) occurring in a word $w$ is a factor $uvu$ (respectively, $u^Rvu$) of $w$. In such a repeat (palindrome) $u$ is called the arm of the repeat (respectively, palindrome), while $v$ is called the gap. We show how to compute efficiently, for every position $i$ of the word $w$, the longest gapped repeat and palindrome occurring at that position, provided that the length of the gap is subject to various types of restrictions. That is, that for each position $i$ we compute the longest prefix $u$ of $w[i..n]$ such that $uv$ (respectively, $u^Rv$) is a suffix of $w[1..i-1]$ (defining thus a gapped repeat $uvu$ -- respectively, palindrome $u^Rvu$), and the length of $v$ is subject to the aforementioned restrictions.
@article{DMTCS_2017_19_4_a0,
author = {Dumitran, Marius and Gawrychowski, Pawe{\l} and Manea, Florin},
title = {Longest {Gapped} {Repeats} and {Palindromes}},
journal = {Discrete mathematics & theoretical computer science},
publisher = {mathdoc},
volume = {19},
number = {4},
year = {2017-2018},
doi = {10.23638/DMTCS-19-4-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-4-4/}
}
TY - JOUR AU - Dumitran, Marius AU - Gawrychowski, Paweł AU - Manea, Florin TI - Longest Gapped Repeats and Palindromes JO - Discrete mathematics & theoretical computer science PY - 2017-2018 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-4-4/ DO - 10.23638/DMTCS-19-4-4 LA - en ID - DMTCS_2017_19_4_a0 ER -
%0 Journal Article %A Dumitran, Marius %A Gawrychowski, Paweł %A Manea, Florin %T Longest Gapped Repeats and Palindromes %J Discrete mathematics & theoretical computer science %D 2017-2018 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-4-4/ %R 10.23638/DMTCS-19-4-4 %G en %F DMTCS_2017_19_4_a0
Dumitran, Marius; Gawrychowski, Paweł; Manea, Florin. Longest Gapped Repeats and Palindromes. Discrete mathematics & theoretical computer science, FCT '15, Tome 19 (2017-2018) no. 4. doi: 10.23638/DMTCS-19-4-4
Cité par Sources :