Tight Euler tours in uniform hypergraphs - computational aspects
Discrete mathematics & theoretical computer science, Tome 19 (2017-2018) no. 3.

Voir la notice de l'article provenant de la source Episciences

By a tight tour in a $k$-uniform hypergraph $H$ we mean any sequence of its vertices $(w_0,w_1,\ldots,w_{s-1})$ such that for all $i=0,\ldots,s-1$ the set $e_i=\{w_i,w_{i+1}\ldots,w_{i+k-1}\}$ is an edge of $H$ (where operations on indices are computed modulo $s$) and the sets $e_i$ for $i=0,\ldots,s-1$ are pairwise different. A tight tour in $H$ is a tight Euler tour if it contains all edges of $H$. We prove that the problem of deciding if a given $3$-uniform hypergraph has a tight Euler tour is NP-complete, and that it cannot be solved in time $2^{o(m)}$ (where $m$ is the number of edges in the input hypergraph), unless the ETH fails. We also present an exact exponential algorithm for the problem, whose time complexity matches this lower bound, and the space complexity is polynomial. In fact, this algorithm solves a more general problem of computing the number of tight Euler tours in a given uniform hypergraph.
@article{DMTCS_2017_19_3_a2,
     author = {Lonc, Zbigniew and Naroski, Pawe{\l} and Rz\k{a}\.zewski, Pawe{\l}},
     title = {Tight {Euler} tours in uniform hypergraphs - computational aspects},
     journal = {Discrete mathematics & theoretical computer science},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2017-2018},
     doi = {10.23638/DMTCS-19-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-3-2/}
}
TY  - JOUR
AU  - Lonc, Zbigniew
AU  - Naroski, Paweł
AU  - Rzążewski, Paweł
TI  - Tight Euler tours in uniform hypergraphs - computational aspects
JO  - Discrete mathematics & theoretical computer science
PY  - 2017-2018
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-3-2/
DO  - 10.23638/DMTCS-19-3-2
LA  - en
ID  - DMTCS_2017_19_3_a2
ER  - 
%0 Journal Article
%A Lonc, Zbigniew
%A Naroski, Paweł
%A Rzążewski, Paweł
%T Tight Euler tours in uniform hypergraphs - computational aspects
%J Discrete mathematics & theoretical computer science
%D 2017-2018
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-3-2/
%R 10.23638/DMTCS-19-3-2
%G en
%F DMTCS_2017_19_3_a2
Lonc, Zbigniew; Naroski, Paweł; Rzążewski, Paweł. Tight Euler tours in uniform hypergraphs - computational aspects. Discrete mathematics & theoretical computer science, Tome 19 (2017-2018) no. 3. doi : 10.23638/DMTCS-19-3-2. http://geodesic.mathdoc.fr/articles/10.23638/DMTCS-19-3-2/

Cité par Sources :